A MONOGRAPH OF CHARAXES AND THE ALLIED PRIONOPTEROUS GENERA.

By THE HON. WALTEH ROTEISCHHLD AND DR. K. JORDAN.

(Plates V. to XIVA.)

EVER since 1 began serionsly to collect Lepidoptera, the section of the great family Nymplialidue which is treated of in this article has leen a favomite of mine. About six years ago 1 began a monograph of these insects, bot had to abandon my project from lack of material and want of time.

In recommencing a monograph of these interesting butterflies in conjnnetion with Dr. Karl Jordan, I feel more confident that I shall be able to place before entomologists a corrent risumi' of the work done, as my series from the Indo-Malayan, Papuan, and Anstralian regions has leen rendered very complete by the lahours of W. Doherty, the late Alfred Ererett, A. S. Meek, and others: in fact the rollection of Charaxes and Eulppis from the East npon whieln the following work is based is the most complete in the world. The African species are also very well represented in my Musenm. The few forms not contained in my ofn collection have bern examined and studied, either by Dr. Jordan or myself, in the collections of others.

I have specially to thank Dr. Staudinger, Messrs. (t. Severin, H. Grose Smith. Wermer, Prabstorfer, Suffert, Röber, Adams, 'rowley, and Dr. Pagenstecher, as well as the officials of the British, Oxforl, Berlin, and Dresden Mnsenms, for their generous help. In most cases we rere able to examine so large a number of individnals of "ach species and race that we could gather a defimite and, I may say, correct opinion as to their distinetness or otherwise. There remain, however, two groups of forms about which considerahle uncertanty exists. I am quite willing to admit that onr classification of these tro groups is open to discussion, bat I think, with the material arailable at present for examination, onr condusions are much more reliable than any presentel hitherto.

In both these groups the individuals give us no chue ins tow whether we are dealing with one polymorjhic and very variable etrecies or with a mmber of distinct though closely allied species. I think, however, that I slall show in the comse of this monograph that the balanee of evidence leans most deeidedly to the side of polymorphism.

The two groups in question are charuxps stheocles and its close alliws, and Thuraces polycena with its hosts of varicties and nearly allied forms. To finally clear up the (fuestion onr fiedd-naturalists in India and Africa must hreed these insects not only from the egg, hot from the eqge of a single fimale, so as to prove the range of specifie, subspecific, and individual mariation. It is to be hoped that collectors in North India and Africa will strive to carry on the tine work acomphished in Sonthern India, in the domain of biology, hy Messse, Davidsom, Aitken, Bell, and others, who, owing to these researches, rank to-lay among the foremost of Indian entomologists. such researdhes alone can teach ns the true solution of the problems presented Ly many of the North Ludian and Afriean forms, and they are not only of value to the student of zoology in the wider sense. Int are of immense impartance to the systematist pure and simple.

In the present monograph we have made a much mone exhanstive stndy of the morphology of the group than is nsually the ease in works of this sort, but, although many important fats have come to light, the resnlts have not always come np to onr expectations. We have mo such marked differences in the sexual organs or other parts in closely allied species occurring together, as the obvions distinctions: to he observed in other gromps of lepidoptera. Hence the comparison of the sexmal organs of doubtfully distinct species affords little help. In Charmes ant alliet genera these organs are, moreover, subject to some individual sariation. These points will he shown finly while describiag each separate species, and are alsu more extensively diseussed in Dr. Jordan's generalization.

We know comparatively little about the life-history of this interesting gronp, ats the earlier stages of very few of the species have been discovered and recorded. A very extensive fiell thus opens itself before the fractical maturalist-collector, and a great number of enigmas of which he alone can supply the solutions remain to be investigated and solved.

The results we have arrivel at in regard to the relationship of the varions Charaxes, etc., are very often at variance with those of other writers on the subject: but we bope to justify our contentions, not only by bringing forward many new facts, but also ly more correctly interpreting those already known.

I have aceepted the name Charaxes for the greater part of the gromp of Tymphalinue we are treating of, it being the oldest unoccupied generic name of which one of onr insects is the type. The type of Charaxes is the Palaearctic species jason.

For a long time the term Nymphalis was applied to our insects instead of Chereres, but this was an crror; for the name Tymphulis was used and diagnosed by Linnaeus in 1 i5s as a subgeneric tem for a section or phalanx of the genus Papilio-thns" Petpitio N'ymplalis"-and this phalanx did not include among its numbers any of our actnal group, for the only one known to dinuacus in 1758 was our present Eulepis pyrohus, which he placed among his "Popilio Eques."

The term Tymphalis, it is true, was clearly intended as a sectional name by Linnacus, as the headings to the pages in his Systemu Faturee distinctly prove; and it most bu applied to one of the numerons genera into which his great phatanx "Petpilio Jymphealis" has since been split up. But it is equally certain that it cannot be applied to the insects we are discussing.

In 180.5 Latreille gave Nymphatis the rank of a genus, including in it the "Pupilio Eques Achicus juson" of Limuacus described in 1 "toi.

In lsue Fabricins united jason and pollux, with a momber of other Nymphalid bntterflies, nuder the genoric itle of laphea, a name already preocenpied by Lamarek in 1801 for a gents of Molluses. As . Tymphatis was atso preoceupied (by Limnaens), Ochsenheimer was correet when iu Is 16 he separated jason from Linnés "P'opilio Eyue's Achims" minder the new generic term Charaxes.

Shortly after, Hübner distributed the species congeneric with jason, athemes, deciun, and curinome over a momber of his genera (the word "coitus" is employed by him instead of "gans"), namely Tigridia (type: aepste, (ram., l'ap. Lirot. t. 121. f. m. F), Eribora (type: hrutus ('ram., l.c. t. D4I. f. e. f), Doxocopu (type: prminie (ram., l.c. t. 190f. f. A. b), Coed (type: curenes Cram., l.c. t. 161). f. 11. E) l'alle (type: decius ('rim., l.f. t. 114. f', A. B), and Euxanthe (type: purinome ('ram., l.r. t. ill. f. A).

In lson hillburg published the nondescript name l'olyure as a generie term
for juson and pyrrhas, giving P'ophiu, Churaxes, Nymphulis, and Papilio as synomyms. In $1 \times 32-33$ simainson erected his genus Jasia for juson, and in 1841 Blanchard put caranes iuto his genus Plonllophasis, together with an American Nymphatid.

In 1842 Lueas described Gordumtion with madegusearionsis as the type, while in 18.01 Westwood, disregarding Hiibner's terms Polln and Coen, which he gives as syonyms, invented the term llilognome for corumes and decius. In more recent times Kirby pat coternes into Prollo, Mabille proposed the term . Konmm for simyher, and Moore divided the Indian speries into fom 世renera, employing the term Charades, inventing two new names, Haridra and llumaredu, and accepting by mistake the word Eulepais, first nsed by Billherg in lxe? as a "uomsundum" for something else: while Butler in 1895 muited moder one mame Churveres all the spreies of onr Charates and Eulepis, inclasive of true I'alla, hat exclaxive of zinghtr. Of the eighteen generic terms used sulseqnenty to Limans. to designate the farions species treated of in this paper (namcly Mymphelis, P'uphiu, Churrexes, Tigridiu, Priboen, Coee, I'allu, Dorocopee, Linsanth', Polyurw, Itesim, Phyllophasis, Gordurtin, Phitognome, Monure, Haridra, Eulepis, and Mumomedtu), ouly four will be able to stand, together with a new genus, the others being redneed to syonyms or symomms "pro parte." There are, among the insects we are cxamining, to my mind only five genera whose limits can be slarply and logically detinch, the types of whieh are respectively uthamas, juson, surinome, trojumus, and droius; the distinctions on which the remaining "genera" are founded not being such as to warrant generic separation, the chief distinguishing characters employed being the extremely variable ontline of the wings.

To the tro species of the genera in question known to linnaens in 1: B\%, (ramer added fonteen more, tro from the East (polycem, curymus) and twelere from Africa (curanes, ningha, pollew, pelies, custor, hrutus, lucretius, etheocles, tivilates, ripheres, decius, eurinome). Goeze, who gave mames to all those figures of inspets of Sela, 'Thesturus IJ'., which he thonght to be unnamed, added onḷ̣ one new name, conomumblutus, which falls (fortmately) as a synonym of pmrmus (soba's figure represunts pmprhus, not sempronits, as Mr. Kirby says in Cot. Thiurn. Lep. pr. its). Drury in 1 lixe described and figured five more species, one from ('hina (uthomas) and fonr from West Africa (morlice, eudoxus, entirlee, ant etpult), lesides naming and figuring some forms which had already been laptized by ('ramer. Fabricins added to the list, in 1ial and 1:99, fitbius from Iudia, bermerdes from ('hina, and sempronies from Anstralia, so that at the end of the last crutury six ludoAustralian and eightem Afriean forms were known (not one from Madagasear). In the course of this century the number has heen increaseld emmmonsly, "specially in the sixtios by Hewitson, Buther, and Fehder. The umber of distinct species of the tive generat is at the present time over one handred and twonty, and the greater proportion of the speife is. moreover, split ny into mome or less well distinguished subspeies. Mare than twothirds of the sperits are Afrionn.

 prionopterons allies of flimerters.

An accont of the (ifographical Distrilntion of the species will be given at the fod of the monograph, as the results will be better moderstood when the reader has berome aequainted with the insects in qnestion, and there will be given also at résumé of the individnal variatility, the sexual, seasmal, and wencraphical maration.

All we will say here is that seasonal rariation cannot be studict withont having properly dated material ; most collectors do not give the "date of captnre of their specimens, in fact one rapely meets with properly dated specimens in otherwise important collections of exotic Lepidoptera. But this is not somuch the fanlt of the fiekl Lepidopterist, who, if pro-

Fit: 1. perly instructed, coukl easily give the date of capture of each specimen on the paper, as of the home Lepidopterist who does not give the proper instrnction, being satisfied with receiving the name of the locality (which many collectors do not even pit on the specimens !). Amongst the material which was placed at my disposal, that obtained by Dr. Ansorge in East Africa, Dr. Roth in the Niger Coast Protectorate, and by the late Mr. O. Mïller in Sikkim, was of the greatest help to me on accomnt of the carefinl labelling.

The nomenclature of the neuration adopted in this monograph is bronght into accordance with the distribution of the tracheac in the pupal wing, and difters slightly from that nsually employed in Great Britain. In the wing of the chresalis we find five principal tracheae: (1) the costal trachea, which is simple, senting out only a very thin branch near the base ; (2) the subcostal trachea, with five lwanches: (3) the radial trachen, with three branches: (t) the median trachea, with two manches: and (5) the submedian system of four tracheae. The hasal portion of the radial trachea becomes obliterated, and the radial branches are foined to each other and to the subcostal and median trachure by means of secoudary transverse tracheac. Thus the upper radial branch becomes united with the subcostal system by a trachead developing from is suhcostal branch, white the lower radial is joined to the modian system by a branch thrown off from the upper median trachea, facts which have been male known ly the researches of Hase, spular, and others, In the wing of the imago, the
conneting veinlet letween the subcostal system and the muler radial wein is generally ealled the mpper discocellular vein; the veinlets connecting the first radial with the second and the seeond with the third respectively are named middle and lower discocellulars; while, very ineonsistently, the vein connecting the lower radial with the upper median uervule is considered an upper section of the median nerrure. However, if the transverse vein between the subcostal system and the first radial, which has developed from the subcostal system, is termed upper or first discocellnlar reinlet, the connecting veinlet between the third radial and the median system shonld consequently be called fourth discocellular.

The npper submedian vein is in butterflies not developed, but the place where it stands in other Lepidoptera is indicated by a fold in the wing ; the extreme basal portion of the submediau nervale is developed in Cherares and allies, forming the so-ealled "spar" of the median nervure. In the descriptions the same designations for the veins will be nsed as in the accompanying liagram (Fig. 1):-

$\mathrm{PC}=$	Praceostalis;
$11=$	Costalis:
Sl^{\prime}	Subcostalis, with five branches, $\mathrm{SC}^{\prime \prime}$ to SC_{3};
R	Radialis, with three branches, R^{1} to R^{3};
11	Mecliana, with two hranches, NI^{t} aud MI^{2} :
S11 $=$	Sulumediana, with two resp. three branchers, ($心$ M I^{1}) to $s y^{3},{ }^{*}$ the brackets of (SM[') indicating that the

Fig. 2.

* It is perbaps necessary to point ont that 1 coment the branehes from the contal towards the internal side, uot in the reverse dircetion. In the Revision of the Lianturn laphion I have adoptel the asual momen"lature of the neuration. and counted the median branches on the forewing, designating them as first, second, and third bmuch, the first being the most cutal of the the Hes. Ifer Rober reproaches me with having said that in reapilio blumei of there is a bairy streak on the second and third median branch, while. aeeording to Röber, it shoult be the first and keeons. Well, the faet is that Rubler's first ami second are my seeond and third, kibber eonting the branche from the intemal side. and 1 from the enstal ide (see Fint. Nachr: XXIII. p. 223 [1897]).
vein is not developed, its place being, howerer, recognizable, and its influence 1 jon the pattern being the same as if the vein were developed :
D^{1} to $\mathrm{D}^{\prime}=$ Diseocellulares.
The edges of the forewing will he called costal, distal, and internal, those of the hindwing costal, distal, and abdominal.

The lengeth of the costal margin is measured from the hase of the costal nervure to the fint thest point of the distal margin in the costal region of the forewing, or to tip) of ' of the liudwing, the length of the internal margiu from the same point to the tip of sde. The length of at ail is measured from the tip of the tail to a line ennecting the two lowest points of the sims before and behind the tail.

To simplify the descriptions of the insects of this monograph and to allow of an exact comparison letween the pattern of the thifterent-looking species, I shall employ the same nomenclatnre for homologons markings in the different species (Fig. : \because). Fon the present it will he suffieient to say that the signifieanee of the markings will be better understood with than without sull a nomenclature ; a comparison of the pattern of the varions inseets of this paper will be given later. The undersilde hat the more generalized pattern, consisting in Chorexes, Eutepis, and lalla of bars between the veins, which I dexignate as :-

```
the four cell-bars (l to 4 in fignre),
    " discocellular bar (%),
" basal series of bars (1),
., subbasal ", ", ", (sb).
." submediall ", ., " (sm),
., median ", " ," (m),
" discal .. ,. ," (II),
", postdiscal , ", " (pl),
", submarginal ,, ,. ,. (smg),
,. marginal ,. ." ., (mg).
```

The interspaces between the serjes of bars are designated from the lase to the distal margin as basal, subbasal, submedian, median, discal, postdiscal, submarginal, and admarginal interspace, the interspace rectiving its name from the series of bars at its distal side. At the proximal side of the submarginal bars of the hindwing there is nearly always a series of white dots. The discal interspace is very often lightcoloured, forming the so-called diseal or median hand of many Cherroces. All the hars are more or less nbrionsly edged with white or phumbeons.

I shall also use some very convenient terms propsed ly F. F. Sehnlze and widely employed in comparative morphology, namely proximal for what is nearer the horly, in ofposition to distal for what is farther from the body, and pointing proximad, distad, costad, internad, for what points or rums towards the proximal ($=$ hasal) part of the wing (or the distal, on the costal, or the intermal, respectively). bach single marking will conveniently be dexignated ly giving the name of the series to whieh it helongs and the designations of the veins hetween which it stands; thens submedian bur $\mathrm{H}^{1}-\mathrm{M}^{2}$ means the submedian bar that stands between the upper and lower median nervule, and bar D^{3} the bar non the third discocellular veintet.
W. l .

NOTES ON THE MORPIOLOGY OF 'HIIRAXCS AND AJIJFN.

When Mr. hothsehild asked me to give an accome of the mornhology of Cheraces and allies, he did so with the special view of ascertaining such facts as might help, on the one hand, to define the genera that form the sulyect of this monograph more accurately than lath hitherto been done, and, on the other hand, to find ont the atfinities of the species within each gemus. As the whert of this account is thus restrictet, I have dealt with those parts of the body ont: which exhibit feentiar characters that can be mulerstond withont an extensive comparison with the strncture of other butterflies and of which the bearing on classification is also more obvions. Besides the wing, I have taken into accomt the structnre of the legs and the ond of the aldomen, in so far as these parts furnish distinguishing characters which are of valne for the purposes to be served ly this monograpl.

It is well known that the seales of the wings are arranged in rows which mu at right angles (or nearly so) to the veins. On the nppersille the veins of Churrafex and other Nymphalids are little prominent in the onter region of the wing, being longitndinally impressed, as shown by f. 10 (11. XlII.). The rows of seales rum right across the veins, thongh the seales themselves are mostly more elougate upon and near the veins. The costal edge of the wing is somewhat thickened in front of the costal nervure, this vein-like thickening, or false vein, as well as the extreme edge of the wing being densely scaled in most Lepidoptera. In the denuded wing (P]. XIII. f. s, Parthenos) one sees the rows of scale-sockets extend close to the costal edge; the edge itself is entire, thin, membraneous, in the normal Nymphalit wing. The scales at the costal edge are strongly inserted and cannot easily be rubbed off.

On the nuderside the veins are convex, except the second submedian one of the hindwing, which is concave below. In most Lepidoptera the rows of scales cross the reins, as in f. fi (Pll. XIIJ.), but in a great many instances, mamely in most (not all) Lepidoptera with very prominent nemration, the veins are scaleless ; in some cases the sockets of the scales, or the impressed punctnres into which the scales are inserted, are still traceable, while in others (Churuces, Palla, Finlepis, buxanthe, Papilio, etc.) all traces of the sealing are lost on the veins, at least in the distal recion of the wings. The costal edge of the forewing appears generally more vein-like below than above; the veim-like structure is divided by a furrow into an anterior harrow and a posterior wider portion. The rows of seales, which are regular, extend also below to the rery edge of the wing (Pl. XIIJ. f. 9).

In Eutepis, Churases, Ewathene, and Frullu the costal edge has undergone a v ry peenliar modifieation, the edge not heing entire, bat serrate, as has heen noticed by several anthors (Trimen, Moore, ete.).* The rows of seale-sockets are seen in f. 3 (I'l. XIII.) to extend to the very edge of the wing, which is not membraneons as in f .8 : the scale-sockets are decply impressed and the rein-like edge of the wing is somewhat raisel bohind them, so that in a view from above the costal margin appears serrate or toothect, the serration being formed by ridges ruming romd the thickened costal edge to the maderside. In Fiuxanthe and l'ello,

[^0]as well as those species of Limbins and Charaxes which are, in this respect, the less specialized ones, there are as may costal ridges or serrations as there are rows of scales betwen the costal nermure and the costal false vein. But in other species of Chardurs and Emlepin, lor instance in C / h. polysenu and allies, there are less costal ridges than there are rows of scales in front of the costal nervure, as about one-fifth of the number of rows of seales do nor reach the thickened edge of the wing (1'l. Xlll. f. a) in the midlle of the costal margin. This further specialization is found to a moth higher degree in a number of 'haroxes, where of every two to three rows of scales ouly one extends to the costal edge, and this row is placed there in a deep groove (as it were), the hinder edge of which is very strongly raised, forming a sharp ridge pointing distad (Pl. XllI. 1. 1).

On the underside the spectalization is still more remarkable. The less specialized form of the costal edge occurs, as alove, in Iralla, Eucanthe, Eutepis, and a number of smaller (Waraces, hearly every row of scales reachiug the edge of the wing: the serration appears, however, stronger than above (PI. XIII. I. 4). The more sjecialized tharmices have the number of rows of seales that reach the edge less, the sockets are less distinctly impressed an the lalse vein, the serrations are stronger and farther apart: while in the extreme forms only one out of every two to four rows of seale-sockets reaches the edge of the wing, and this row is very feebly or not at all marked ujon the false vein (Pl. Alll. f. ?). The less the number of costal ridges is, the higher they are.

It is apparent from Pl. XIIl. f. 1. ?, which show few seale-sockets on the false rein, and these feebly impressed, that the sealiug of the costal edge of such a mitterfly must be different from that of the butterlly represented on ll. XIll. f. s. 9 , where the rows of seales atend to the wing-edge having the sockets well impressed. And we find, indeed. a further specialization in Churestas alat allies. In all the
 the costal edge are rather loose, falling ofle easily. and the edge of the wing is, therefore, mure or less bare of scales: in species with the "dge so moth specialized as shown in f. 1. "(l'l. XIIl.), there are only a few long seales present elose to the fostal teeth, while the fake rein itself is naked, a character that is very remarkable. As the scales are more casily rublod ofl' from a stiff part of the wing, like the costal dedere of Churturex and allies, than from a soft part that gives way when tonched, the nakedness of the enstal edge might be attributed to accidents to individual precimens. But that is not the true explanation: for, on examimation of the wing of a freshly emerged 1%. jusom, I find that the costal edge is wery sparsely soaded below, and even on the edge of a wing examined betore the specimen had emerget from the chrysalis the saling is sparse, thongh there are more seales than in sperimens that have heen at large.

The luss of scales in the costal region of the forewing below is in some Thureress (rumbiope for instance) still more obvins in consequence of the obliteration of every seeond row of seales before the costal nerwure, the remaining rows giving a peeuliar anpect to that jart of the wing. lutermediate letween the serrate wing of Churnses and those allies and the normal Nymphalid wing stands: that of I'rothor centedomia, in which the costal edge is not serrate, but more or less deumed of scaliner.
 to that of Churures cundiope, tiridates, cote, is wot complete, there being at break in the serico. inasmucla as there is nu complete transition from the edge on which
there are to every three sermans about four rows of seales resp. scale-notkets in the middle of the costal margin (Pl. III. f. 3. 4.5), to that elge where we fiml at least two rows of scales to every siugle serration (Pl. XllI, f. 1. :2). We have, therefore, two gronps of Churrocs in this respect, the one having the number of serrations agreeing more or less with the momber of rows of scales before the costal margin, the other having about twice as many rows of scales as the costal edge has serrations. It is interesting to find that the second grour, containing the most specialized forms in this respect, is confined to the Ethiopian region, inelusive of Malagascar, with one offshoot in the Meliterranean countries of the Palacarctic region. The gronp includes the allies of jeson, protoclea, umeliue, brutus, pollux, carames, candiope, tiridutes, and, juson being the type of "huroures, represents the typical Churuces. All the other African Charmass (inclnsive of ctesipe), which are generally less robnst and smaller than those of the second groap, and all the Indian Churoxes and Énlepis, and the Afriean Pollu and Limunthe, have the less specialized costal margin. It is, further, most instrnctive that the lirown IndoAnstralian species (polysen and allies) are those which approach in the specialization of the costal elge nearest to the African curnmes and allies, which they also resemble somewhat in prattern.

The specializations of the costal edge and the nenration here described are suggestive in another direction. A comparison of the rows of scales hetore and behind the costal nervare shows that the excess in number of the rows of scalesockets over the costal serrations is certainly due to the obliteration of scale-rows at the edge of the wing, not to an increase of seale-rows in lront of the costal uerrme. A: the number of serations is smallest in those species where they are most prominent (firitutes for instance)-the same wing bas the servations also more numerous and less prominent distally than proximally-and as, further, in such species there is scarcely any trace of scale-sockets on the false vein, it is evident that there is sume connection between the beight of the serrations and the obliteration of scaling, and from this we can safely conclude that the development of serrations has been depeudeut, at least to some extent, on the obliteration of rows of scales at the costal elge. If we now take into cunsideration the fact mentioned above, that in Churcoses and allies, Pupitio, many moths, in short in many Lepitoptera with frominent nenration, the veins are on the undersile devoid of scaling, it suggests itself that the thickuess of the veius might be the direct canse of the non-development of scale-sockets and scales: thut this caunot be true, because there are many heary-reined Lepidopteral which have the veins scaled below. The unde-veined Lepidoptera are for the most part quick-flying insects, among them being the most 1apicl-flying butterflies, such as characes, and quick flight reyuires strong venation. Now, it such rapil-flying Lepidoptera are inhabitants of bush and forest locality, the costal edge of the forewing and the jrominent veins of the anderside come often into contact with branches and leaves, when the insect darts away. In the individual Characes the traces of the friction are very anarent, and characes are known to dash their wings literally to pieees in their heallong flght. As rapid-flying insect-, like Sphingidue, which inhabit open comtry, aul are, moreover, dexterous Hiers, have the costal edge not thickened, not serrate, not clenuded of scales, and have the veins below also scaled, it would not be far-feteched to sty that the habit of " Charawes gives an explanation of the peculiarity of the costal (dge and the andeness of the veius of the underside. For it conld be arged, from a Lamarckian point of view, that the loss of scaling by friction hal become bereditary, and that the chashing of
the costal margin agrainst foreign objects. had led to increased vigom of this part of the wing, and consequently to a thickening of the originally normal edge; but this explanation would leave out of acconnt the development of serration. On the other hand, it might be adranced that the sealing offered a protection to the costal edge, and that this protectiug sealing becoming rubbed aray and the edge exposed to danger, those varietal specimens hence being the better provided in which the edge was thicker and which had another kind of protection, namely the ridges or serrations, selection had set in and led to the present stage of development. But this would merely meau pushing the origin of the character late to the stage wheu it was an individnal varietal character for which Natural Selection does not give an explanation. To understand the meaning of the serration it will be neeessary to refer to other wings with serrate costa: the wing of the Pierid genera Prioneris, Belenois, iallidiyns, in whiel the male has the costal margin of the forewing dentate, of the l'apilios allied to phacton of which both sexes have a sermate wing, will perhaps help to elueidate the biological siguificance of the serrations and their causes, a question I shall lave to enter npon more fnlly in another place.

The wings of Cheroces and allies exhbit a second structure which, although not peculiar to these genera, is of importance as a striking and easily discernible distinguishing character. In nearly all Lepidontera the scaling of that portion of the underside of the forewing which is covered by the hindwing is markedly different from the scaling of the dise, as every Lepidopterist knows; the scaling near the base being, moreover, different from that of the outer three-fonths of the internal marginal area. In A'ymphalidue we find always a basal patch of peeuliarly modified seales at the internal margin, variable in length and width and of a silky appearance, consisting of triangnlar scales that stand more or less erect, or, at least, are not tring flat as those on the dise, and are shorter and narrower than the normal seales. Snch a triangnar seale is represented hy f. 13 (Pl. Xlli.), showing the peculiar character of the striation: while f. It (Pl. XIIl.) represents a more normal, but non-dentate, seale from near the hasal patch. The eorresponding pateh at the base of the costal edge of the Lindwing is well known. The pateh of the forewing extends in Jymphutirlue from the internal margin either to the submedian nervme S Il^{2}, or beyond that vein to the summedian fold ($\mathrm{S} \mathrm{H}^{1}$). The difference in the extent of the patel is casily recognizable with the naked eve on account of the difference in the gloss of the triangular, half-erect, and the more normal scales. In all Eutepis, Cheraces, and E'ucenthe (and many other Agmphulidere) the patch reachen to (SM1), as shown in f'. 11 (Pl. XIH.), while in l'alle and I'rotho" (and (other Nymphelidue) the pateh stops at SM^{2}, as shown in f. 1: (Pl. XIII.). 'lhe sexen arr alike in the development of the patch. What the function of the patch is 1 do not know. It is not a stridulating organ, as vein SH' of the forewing protrudes too much, hut it is possible that the stales are the covering of small glands which produce at thid of specific smell sirving as agnide to the sexes of the same speeies in recognzing each other. For the individnal buttertly on emerging from the pura ranot be sujposed to haw a knowledge of the distingnishing characters in pattern of the sperics to which it lelong*. and to arynire this knowlelge low means of the stes is certainly a pretty difticult task, comsidering that the individnal looks at its own wings under snoh a very small angle that it camot recognize the exact poition. size, and ontline of the wing-markings: besides, in the case of sexnally diehromatiand dimorphic species the knowledge of its own wing-pattern and ontline would not hel l_{1} the mate to tind the cospecific femate. It is certainly not conceivable that

E"ulepis moori o knows, or learns lo khow, the distinetion between ths own moor of and the stranger hebe by means of the eve, and that Gureres proforlen of finds ont by sight which of the white-marked fimules of its locality is its own fomele. 'fhere most be community in characters between the sexes of the same species that hinds the cospecific individuals together" the "recoguition character" must not only lu perceptible, but, what is just its important, it must be intelligible to the individual that perceives it, making the stranger at once a "familiar " heing. A "specifie" odonr common to both sexes would he such a recugnition character, and the hasal patch, so widely distributed in Lepidoptera, may possibly the a structure from which such an odour emanates.

We find, further, at the base of the forewing below, in the fork formed by the extreme basal portions of the mediau aud upper submedian veins (11 and SII ${ }^{1}$), a small structure, more obvious in the typical Chroures than in the others, which 1 believe to be also a glandnlar organ. SlI ${ }^{1}$ is free at the luase, then fuses with 11 , and is soon thrown off again as "median spur" ; basad of the SNI there is a coneave fold, and between this fold and M the membrane of the wing is somewhat thickeued, forming a flat tuberele that is impressed in the middle (G in Fig. 3); the tuberele, inclusive of the impression, is covered with many ereet long scales, which form a kind of brush. In I'alla the organ is rather more tuberenliform. It is present in both sexes of Eulepis, Churuxes, Euxanthe, and P'elle, but I cannot say that it is con-

F'lis. 3. fined to these four genera, though I have not seen it in uther Lepidoptera.

The neuration of Cherroces and allies presents several points of interest. Eucuenthe, as is well known. differs from Cherroses in the subeostal system of the forewing; the peculiar development of the subeostals in the varions species of Eucouthe will be fully dealt with under that genus. P'olle agrees mith Chumaces, except that the stalk of the smbeostal fork of the forewing is longer. In Eirlepis the cell of the hindwing is open, 1) having dis:ppeared, which does not ocem in Churacess and I'allu, but in all trne Eucuutho. Sometimes the mper portion of U^{3} is vestigial, forming a short spur of R^{2}. The black line upon D^{3} of Chureces in also present in many Eatenes (not in l'ulto), and in this instance the marking has proved more constant than the neuration: but we mnst lear in mind that in the undeveloped wing of the ehrysalis D^{2} is represented by a trachea most likely also in Fiulepis, and that the makings of the wing are developed largely according to the distribution of the trachene of the paral wing, as is plainly demonstrated by the subcostal fold and the markings near it, this fold leing represcuted in the chrysalis by a trachea and in the more generalized Lepidoptera by a vein.

The position of 1^{3} of the hindwing is in Churaces very variable according to species, sex, and even individual, the reintet joining the median wervare either at the point of origin of II^{1} (Fig. 12), on between II^{1} and II^{2} (Fig. 13), standing seldom a little bevond Il^{1} (Fig. 11). The genms ('huremes vamot, however, tee sulit up inte three natural gronps according to the position of 1 ', as widely different species may agree in that character. While closely allied ones donn. The most intereating fact now is that the sexes are often bery ditlerent in the puint of juncture of D" with Il. the reinlet being in that case in the femele always more basal than in the mele. As the sexes are cither different or not in the pesition of the veinlet, we have the following three eases to distiuguish (with intergradations) :-
(A) The reinlet D^{3} stands between M^{1} and N^{2} in buth sexes:
(13) The veinlet D^{3} stand in \& between I^{1} and I^{*}, in δ^{8} at point of origin of H^{1} or cluse to it ;
(() The veinlet J^{18} stands in both sexes at or elose to the point of origin of 11^{1}.

If in Intterflies amd moths the sexes are different in memation, the discrepancy is mostly to he aceomited for by the presence of special structures in the mole, such as seent and stridulatory organs, or ly a differenee in the shape of the wing. In the case of (horumes there must he another explamation of the difference of the sexes in the position of D^{3} of the hindwing, for there are no structures in the male: wing that conld influence the position of that veinlet, nor do the wings of the sexes of protoclen, for instance, in which species the sexes differ in the position of $1)^{3}$, deviate more from each other in shape than they do in azotu, in which the veindet is the same in fusition in hoth sexes. Hence it is olvions that the above cases (A), (B), aud (C), with intergradations, relresent stages in the matation of the unnation of chmoses ; and it is further elear that the matation began with forms in which the veinket had the same prosition in both sexes, began either with (A) or with (C). As said on 1. 440 of this volume, the gnestion mostly so difficult to answer is not, Where is the road that Evolution has taken? but Which is the direction in whict Evolntion has traversed that road? Had the ancestor of Churuses the veinlet as in case (A) or as in case (C) : Or in other words, considering (13), is the femmele the more adranced in mutation, or the male? So much is sure that mutation has been detinite in the case of charrises, else there would be species in which the veinlet D^{3} is more basal in the of than in the 8 .

The accompanying diagrammatic figures show the position of the reinlet in guestion in a number of Lejidoptera the neuration of which may be taken as representing varions stages in the evolution of D^{3} and R^{3} (but the lepidoptera here referred to are not meant to be ancestral forms of Chereres). In the chrysalis, of a Nymphalid (Fig. 5) R^{2} stands between ML^{2} and R^{2}, and a connection between 1^{3} and I^{1} is bronght about by the development of a trachea D^{4} (punctured in Fig. it) from I^{1} that joins R^{3}; in a similar way R becomes connected with l^{2}. In the wing of Hepralus (Fig. 4) 1^{3} and D^{1} are readily recognized as transverse veins, while in I'ipilio (Fig. 15) D'appears to be a prolongation of M, D^{3} remaining, however, more or less transverse, but puinting somewhat distad; in Hestia (lig. i) D ${ }^{3}$ stands at right angles to the middle line of the cell, and in Coduge (Fig. s) it is sumewhat directel basad; ('ulinagu (Fig. 9) has the veinlet thinner, longer, and more oblipue, and D^{4} forms here a very blnut but distinct angle with R^{3}; in Coenophlebia (Fig. I11) D^{3} is very thin, D^{1} and R^{3} form no angle, D^{1} appearing to be the lasal portion of R^{3}, and R^{3} stands as in the $\mathrm{p}^{\text {receding }}$ figures outside of IL^{1}; in Charares empatr (Fig. 11) D^{3} is very often placed just at the onter side of M^{1}, while in Churores protoclea $\delta\left(\mathrm{Fig}, \mathrm{J} \%\right.$) it joins M at the point of origin of $3 \mathrm{I}^{1}$ and in protoclea f (lig. 18) between II^{\prime} and H^{2}. It is evident from these figures that the cross-vein D^{3} is an accessory veindet connecting originally the second with the third radial, there being in the mure generalized Lepidoptera and in the chrysalis no direct conncetion between Hf^{2} and Nl , and that the more lasal position of that veinlet in the imaro of Fharefo's and I'allu (and other Agmphatinte) is a later acynirement (the basad movement laving taken place in connection with a shortening of the lasal partition of the subcostal and a backward movement of 18^{3}). Hence the Charaxes with the veinlet placed as in Fig. 13 are, in respect of this single character, younger than those 'Varrenes which agree with lig. 11 and 12 ; and the development of the veinlet,
further, shows arain that the femele sex is, as repeatedly contented hy me, in advance of the mule sex.

We have thas recognized that the δ of 1%, motoclen (Fig. $1 \because$) is less adranced in that particular part of the venation than its of (lig. 13), and that also the species protorled is less advanced than azota, which sipecies agrees in both sexes with Fig. 13. Now in pattern the δ of protorleu is decidedly more specialized than the δ of erot"; hener we have here a clear demonstration of the peculiar and very important phenomenon, which classifiers shoukd always bear in mind, that one and the same speeies (protoclea) is in one character more specialized and in another character more generalized than its close ally (azotu) : speaking if a species or family as being more specialized than another does not mean that the higher specialization is tomen in all organs.

Fice.t.

Fie. 5.

Fits. tis

Fig. 7.

Fig. K .

Fis. 9.

Fici. 11.

Fig. 11.

Fig. 12.

Fig. 13.

It is, further, of interest to mote that all the Indo-Australian Churures have D^{3} as in Fig. 1थ, that the African C\%. rarmes and fulcescens, the pattern of which is in many respects generalized, agree also with Fig. 12, while some species with aberrant wings, like zoolinm, and some of the larger sexually dichromatic species (ciolettu, mumenes, ameliue) agree, at least in the 9 , with Fig. 13. P'ulln, with a specialized pattern, has the reinlet even more lasal than it is in Fig. 13.

The legs of Charases and allies (II. NII. f. 1.5-:1) present also a few characters which mast he mentioned here. The hinder and middle tihiae of Eulepis, Cheraxes, and Eusanthe are spiny above and below, while in P'olla the spines of the uperside are represented hy short hairs which are conceated under the scaling. The npperside of the tarsi is in Eucanthe finmishet with much longer spines than in the other gencra.

The last tarsal segment (iharp, hear ahove (as in other loppidopterat) at the tip
 sis to ten in the alove genera, while in other. Nymplatinet the momber is sometimes reduced to tour. In the smallor 'Vurexis and Enlepis there are wenerally six or -even apical bristles, while in the lareer 'homenes there are mostly cight and in limuathe ten.

The mudersidn of the last tarsal segment (I'l. XIII. f. lit) is tlat, and is furnished on each side with two rows of spines: the external row of the outer side of the squent (righthand side in figure) is in must "hroreres amd biulepis incomplete. This difference in the develoment of the two siles of the seerment, exmplified aloo hy the specimens that have seven instead of six or aight apheal bristles. reminds us of the asymmetrical development of the more basal segments of the antemate which have only the onter groove deroloped, an explatined in 1. flas of this volume. Tha incomplete development of the onter row of spiues on the sole of the last tarsal segment may stand in conrelation with the asymmetry of the tibiae and limome 1 camot here enter upon the puestion if the tarsal segment as represented by f. fos (${ }^{\prime}$ l. XIII.) is a derivation from a secment with both sides symmetrically furni-hed with pines, the onter row of the outer side havius partly become obliterated, on whether the secment with form complete rows of hawy spimes as
 from hairs they form as such a specialization and hence it appears posible that the symmetrically spined firedntes sugment mpesents a higher spectalization than that

The sele of the last tarsal segment is mot scaled in the midnle, but corered with very short and fine hairs: the last but one segment has a few soales in the midde. There are also fomr rows of spines on the sole of this segment, but there appar (as on the three basal segments) some spines hetween the two rows of each side ; the number of intermerlite spines is mostly larqer at the inner than at the outer sidf. of the sole.

The anterior tarsins of the muld is very variable in length: in Euxtorthe it is. however. always repy short, much shorter than in any species of the other three generat. Thongh it appears to consist of one segment only on arconat of the dense scaling, one finds. on removing the scales, that the tarsms is very uften jointed ; the fatsus varies individally from being one-to fomejonted. Somethes there are som" phines preen, lat most individnals examined ly me were withont them. The strong apical spines of the four posterion tibian do not seem to be ever represented at the tip of the foretibia of Churasex, though they are found in Peelle. In Findonthe the short and thick tarsus has the midile and apex below not sealed, and the tibia bears many thin bristles. The anterior tarsus of the femele of "\%roures
 and appears slighty twisted in comsequene of leeing asymmetrically compressed; the uthers are short, and symmetrically, wore or less strougly, compressed. The underside of the first and second segments is more or less densely sealecl. while segments :' to sis are sealed beneath. The "ontignration of the ventral surface varies acoording to species and groups, especially the height and ontline of the consex mesial portion of the sole. Segments 1 to 4 bear an apieal pair of heary and another $1^{\text {air }}$ of smatleq spince, hesides some small spines farther hack, which vary in nomber indiviluall? hat are more momens in the large Africau speese of

the base of segments 3 to 5 (very seldom on the second segment of P^{\prime} 'lllu") there is on each side a dense lurush of stiff hairs, mostly of a buffish colonr. These brushes are present in all Nymphalinur, but seem to have beeu overluoked. Haiss like those composing the brushes are widely distributed on the tarsi among hepidoptera, but the are fombl in considerable mombres only in the fomoles, and it is interesting to observe that they are not fomm on all the tarsal segments, wor on all tarxi, but occur commouly on the sole of the foretarsi and are here oiten massed together on the first segment. Thus we fiml, fir instance, in the femules of lapilio the sole of the first segment of the foretarsi densely mored with yellowish hairs, resembling the hairs of the tarsal brushes of A'ymphatinat, while the midille and hinder tarsi of the femele and all tarsi of the mule are without such a clothing of modified hairs. The disparity between the sexes and between the foretarsi and the midde and hinder tarsi couviuces me that thene hairs have a suecial function confined to the femule, and I think it probable that they have a sensory function which comes into phay when the femule is selecting plants the the deposition of the eggs.

The fifth segment of the femele foretarsi of Charuxes and allies has no trave of the claws, but there is a membrateons argan inserted into the segment just lefow the
 and parauchia: one or two aphal histhes are also generally present.

A greater variety of striking distinguishing characters is fonnd in the seyments of the abdomen, which are moditied for sextarl pupuses, than in the ligg. 'llhe ventral plates (stemites) of the serpoth and eighth segments of the femule have undergone modifieations in connection with the vaginal aperture. In Chureres and allies the generic and inceitic chatacters offered by these segments are not so conspirnons as in the case of P'apiliondtue, deracince, and others, but are obvions cuongh to be of taxoumic value. In I'ollo the apical edge of the seventh sternite is raised into a donble tuberde (Pl. $\mathbb{N 1 V A} \mathrm{f} . \mathrm{B} 1$) in the middle; the segment is also centrally strongly convex : the apical edge of the sixth segment is thickened and protrudes a little rentrad; the eighth sternito bears basally a rounded mesial impression with two small tubereles at the hottum. In Cherress (Pl. XIYA.f. 3í) the two tubercles of the seventh segment :tre wating, that the midnle portion of the seventh stemite is in some forms (rtesige aud allies) balying ont ventral, forming', together with the busad impmesion of the eighth steruite, at rather large cavity (Fig. 14). Lumost sperges of 'harmes, Eulepis, and Einmathe the seremt stemite is evenly sonsex, with the apical edge somewhat thickened, slightly incised or sinmate

fill. It. in the middle: the hasal pastragimal grove of the eighth segment bears at the bottmon an hat that amuth taberele : the himder edpe of the
 than in Chorrate's and Liehtrus.

The end of the athemen of the mele is math moper compticated than int the femelr, the uinth and tenth segments (sternitus and terreites) heing here stromgly

[^1]or clasper (ix. I on Il. Nilis. f. : 3). The ventral part of the segment is wider, being extended lowsal into a rounted rocl-like hollow hande, the stwens ('eytomean), and hearing clase to the elaspers a semieircular grove, the brim of which is more strongly chitinized (in. v on P'l. N1VA. f: : 6). The minth sternite is als enlarged apicald. forming in the cavity laterally bordered by the valves a couvex plate of chitin (III. XIV.A.f. 26. ix. PF゙), which has the midtle line more raised and is apieally produced into a enrsed process (Pl. Xl| A. f. 25. Ple). In a lateral view ($\mathrm{Pl} 1 . \mathrm{XlV}$ A. f. 26) the convex plate ix, v is seen to extend dorsad laterally, thus forming a kind of balfecylinder, wr rather fimel, that is elused abow by the tenth segment (x, v) : from this fomuel protrudes the penis (P). The size and shape of the opening of the penis-finnel, as well as the length, width, aud curvature of the process, vary very moch according to species or groups of species, as can be seen from Pl. XIVA. f. 37 -42. In all tivelepeis the month of the funnel is restricted to the base of the process (f. 37), the latter not being concave above, while in many (\%oroses it extends to near the tip of the process (f. 33. +1).

The tergite of the tenth segment is suldered together with that of the ninth, forming as strongly chitinized smooth plate ($x .11$ in f. 2.29 of Pl. XIVA.) of varions shapes. The sternite (x, v) is less chitinized, has the sides basally dilated ventrad and dorsad, and hence appears convex above and below : it is, howerer, generally raised in the middle line when the anns, that lies between the tenth sternite and tenth tergite, is closel. The tergite bears many hairs at and near its edge, while the sternite does not. While the ontline of the tenth sternite (as seen from above or below) is generally more or less the same, varying from being more triangular to being nearly semicireular, the tenth tergite offer: interesting dillerences in the varions gronps of species. We can distingnish two brincipal types in the shape of the tenth tergite. The first type (Pl. XIVA. f. 33) is romoled, with or withont tooth at the apex: the tooth is seldom divided (I'I. XIV.A. f. 3t), which can happen in a specien that han the twoth genemally simple: here belong many $(\%$ lemos's and Eialepis. The second type is represented by f. 36 of $\mathrm{I}^{\prime} 1 . \mathrm{XIV} . \mathrm{A}$: the tergite is apically produced into two tecth, and the division of the tergite in the mithle line into two halses is often indieated almost down to the base: such a tergite is found in many Eale pis, ' 'kuroces, and tiucunthe. It must be pointed ont that species which are similar in the tenth tergite are not necessarily close relatives.

The valves are that part of the sexual armature which Jopictopterists geuerally make use of in the discrimination of species. In onr case these organs are not such good grides as they are in other grons of lepidopterat for I have often failed to find in closely allied species diflerences in the valves that hold good, for instance in Eulepis rethoman, moori, holor. 'humoses hrutus and pollex, though these speries are otherwise well sparated and perfectly distinct. ldentity in the valves in Churuces and allies certainly dors not mean that the respective insects belones to the same species.
 mostly to be twisted, as ardge of the immer sheath of the valre, comesponding to the "lanpe" of other Lapidptera, is eomanmed to the tip of the process. This form of the value is fond in the typical flemerees, the brown Eastern forms, and others. In the species allied to etholion the valve is atso prodned into an apical process, but the lafore-mentioned ridge 1 mons towards the wotral edge of the valve just below

ctesipe and achuemems there is a dorsal hork. Nharmors : singhe has the twisted apical process, but, hesides, in the middle of the rental calge a long slender tooth : and Ch. lichas and perphienuss' have, besides a long apical hook, a sharp tooth mon the onter side of this look.

The so-called penis (ll. SIVA. f. \because :. I') is often slightly angulated loptore the
 a cylinter which is compressed at the end, bears ther opening just before the apex, and has the apical portion membraneons ventrally in the mildle line. The npperside is provided with teeth which are directed distad: their pusition and mumber are often remarkahy different in not elosely alliod species, while in close allies the penis armature is often the same. Thas in all Siulepis we find a solitary tooth beforthe apex (Fig. 1.5): in feblins and its relative porsipe the penis is dilated $1 \frac{1}{2} \mathrm{~mm}$.

Fig. 1\%.

Fig. 1%.
before the apex, and this dilated part is heavily denticulate (Fig. 10i): in Pallor the tip of the penis is slightly thickened amh dmsely toothed ; in $f^{\prime \prime \prime}$ phom amb allies it is
 to be to prevent the chitinized sheath (penis) of the ductus ejaculatorins suing tor deeply into the raginal eavity, by catching hold of the wall of that cavity, sn that, by further pressure upon the apmatus, the membranmons ductus efaculatorius can protrule and enter the rather Inge duct of the so-called harsa copmatrix.

The most interesting part of the mull apmatus is the pemis-finnol, which I
 in any of the other rolatives of "horoves, such as I'nllu, Imeren, L'rotho". I'reponu, etc., nor have I met with it in any wher Nymphaline butterfly that I have compared.

In consernence of the absence of the penis-fumel from Pallo, the opening for the penis in the membranc covering the ninth segment hetween the ralves
 penis, when protroding, has a more veutral position than in 'Horewes, Liulepis, and Finconthe. This position of the penis may explain the difference in the shape of tho valves of P'allu and 'Fmmores, Litelppis and Eroctuthe: in the latter three genera the hook-like process of the ralve that serves to fix the sexes fogether is dorsal (l'l. XIVA. f. : '4), while in I'olla (I'l. NIVA. f. '3i) the valve is produed ventrally

There are some more conspionous points of diflerence between the two last segments of Prollo and rherears, as will be seen by compaing figntes ?t to sy of Plate XIVA. The ninth segment is molels larger than in Chomas: the ventral fortion is especially enlargel, covering the extreme base of the valves in a ventral view (I'l. XIVA. f. 299). The tenth sternite is rather slemderer than in Chererces, and the tenth tergite is producel into a long, slender, wery sharp and strong median hook. In this latter charactur P'alla agrees with many Iymphatime, whild the divided tenth tergite of a number of Characes and Eutepis and of Euxanthe is ennite exceptional.

(AENTS FILAFPIN.

Lribncu IIubner, I'era, bek. Schmelt. p. to (I816) (partim).
 Lep. 11. p. 314 (185(1) (partim) ; Kirby, C'u. Diurn. Le'p. p. 2677 (187a) (partim).
Jescine Swainson, Zonl. Illustr. 11. t. 90 (1832) (partim).

(partim): Butler. P. Z. S. p. 622 (1865) (partim): Scbatz, Fom. und Cout. Taft. p. 176 (1N92)
(partim) : Butler, Joum, Linn. sinc. Loud. XXVV. P. 339 (1896) (partim).

Antennae rather sparsely covered above with small narrow states: grooves of underside decp, extending from the lase to the apex of the segments; last four or five segments considerably shorter dorsally than ventrally. forewing, costal margin serrate: SC^{1} and $\mathrm{SC}^{(21}$ hefore end of cell, SC^{3} and sin° on it short stalk, S ${ }^{15}$ thrown off from $s^{\prime \prime}$, the latter beut below apex of wing: lase of (心.sp) as spor of M: Hasal pateh of seales extending to (SN 1). Ilindwing, cell open. C'ell of both wing never with more than two bare below: do with penis-funnel which Lhas the opening restricted to the hase; penis with one tonth hofore apex.

The small seales of the antenate, the serrated costal margin of the forewing, the short stall: of $S^{C^{13}}$ and $S C^{4}$, the bent apex of $S C^{13}$, the penis-fumel and median spur, represent a combination of characters nowhere clse met with except in Cheruses and Euxcenthe. From the latter genus liulejpis differs in many respects, for instance in the subcostals of the forewing being all free. While the resemblance between Eutezis and Characes is so great that most anthors have merged the two together into one genus. It is true, the open cell of the hiudwing distinguishes Fulepsis at once from Characes, as pointed out hy Moore, l.e. Hnwever, as the loss of 1^{3} of the hindwing is observed in many Aymphetinue which are not so closely related to one another as to forms which hare the veinlet preserved, the obliteration having taken place independently, it can justly be urged that the absence of 1^{3} from the species united here under Eulepis does not necessarily warrant their being a group of close allies which stand apmet, in a phylogenetic: sense, from all the species of Chureses. Bntler, indeed, lrings (le.) Cheruces hatriomes, on account of its white (a) om, among the species called by as Eulepis, and considers another true Churores, namely mitetis, to be a transition from the allies of pyrrhes, which is an Fiulepis. to the atlies of prophon, which belnges to 'therceces, thongh hoth pretephon and hutriums have the cell of the hindwing pertectly cloced. But there are other specializations which confirm Moore"s opinion of the generic distinctness of E'ulopio, and whieh show that there is in several respects a great unitormity in the development of the specties of Eulepis.

The antenute are like those of Churaxes; the fast three to seven joints are nearly alwiys rutous brown, seldom brownish black. The costal edge of the forewing is never su highly spectalized as in the large species of Chorores, there being, in the hasal hath of the wing, nearly as many sarrations as there are seale-rows in front of 6 , althongh Eulppis contains forms larger in size than the largest species of the tymal sroup of Charares.

Of the four cell-bars of the diagram of the Characes pattern (Fig. 2, p, 549) only two are fonnd in Eulepis on the forewing, namely hars 3 and 4 , and one (bar 4) on the hindwing; in a number of forms bar 3 of the forewing has also
disappeared: in E.guman only there is a vestige of ecll-bar? on the lindwing. There are no remnants of the other cell-hars in any of nur Eulepis specimens. and this is the more romarkable as the hars are in many Emppis extremedy heavily marked (E. phrrhus, hodemi, ete.). There is one groul, of rhirmoses, namely the species allien to myorrinm, which agrees with Enlepis in the number of cell-bars. but differs in the further development of these bats; for the fonrth cell-har of both wings af the move succialized Eutepis, tugether with the sulbmedian and median hars, form two more or less continnons lines, which include between themselves a gencrally brown or yellowish lown hand that is comed hasad. pointing at least towarls the anal angle of the wing, while in "homeres
 stand, taken as a whole, at right angles to SMI, inelining basul posteriorly.

The discal interspace (see p. 500) is white on both wings, forming a white diseal haud : ouly in two forms (E. eprigenes δ, and sometimes in E. cophortis δ) is the white hand extremely reduced. The postdiscal and submarginal interejaces of the forewing, or at least a portion of them, lave develonell white spots, and in many cases the larger partion of the gromul-coluar of both wiags, esjecially of the modersile, has become white. The postdiseal interspucss of the hindwing are more or less luniform; the diseal and postdiseal bare are gememaly arched, and the two of the same cellnle often joined together.

The hindwing has two tails, the second of which is sometimes a mere tonth.
The onter row of spines at the onter sile of the sole of the first segment of the middle and hinder tarsi is incomplete even in the large specien of Eulepis (spe prois).

The penis-tmmel (Pl. XIVA. f. 37) has in all Eulepis the projecting part not concave ahove, the month of the funcl heing restrieted to the hase of the honk: in this character Eulepis differs obwinsly from (hurures, whieh have at leant the
 Eulepis also very uniform in shape, all the species agreeing in having a slenter penis with a single rather prominent tonth hetore the apex (Fig. 15), while the form and dentition of the penis of Cherreres are very variable in the varions gronps of epecies.

The egg seems to agree with that of 'rherrers, judging from the caces takem from the hodies of eabinet specimens. The larva and papa are also not structurally. different from those of Churrives.

The genas Emepis is confined to the Fast. lont is funm there from ('eylous.
 Anstralia, Solomon Islands to New l'aledrmia and Fizii. 'Thu" hathits of' the sureps agree on the whole with those of 'hurvices.

 genus is based are, bowever, whally murelisthe.

The name of Eenlepis was iutroducell lye More (loc.) ly mistake, as said alowse.

 of Mespurtiu or.
uthemets. Eg. 36. ."
The species uthemas has beent womsidered to he 1)rury"s uthemers: lint from the
remark＂Eg． 36 ＂$=$ Ego，specits nowa tredecima＂t sexta，and from the syonym： behind＂Eulepis．＂and further from the fact that this Eulepis is in Billherg＇s chassi－ fication a genus of＂Zephyriites，＂correxponding to sum Lycuenidue and Erycimidue （incloding a Hesperiid），it is clear that Billberg＇s athamas waw in Billberg＇s opinion a new speries，and certainly not the Nymphalid athumus figured by Drury． Billberg＇s name is a nondeseript，has therefore no defined meaning，and henee is no generic term ；the word＂Enlepis＂was accordingly free in lnal to be employed in zoology as a generic name for the Nymphalids we are dealing with．The＂author＂ of Fulepis is of course Moore，not Jillberg or Dalman；not the coiner of the word， himt the publisher of it as a defined scientific term，is the＂anthor．＂

The species of Eulepis can be separated into three groups according to the development of the pattern，represented respectively by pyrous，eudumippus，and delphis ：each group can of conse be subdivided，down to the varietics．

In the first group（1．）the two bars of the cell of the forewing below have preserved their original character as trausverse bars，both being heavy and not inter－ rupted：the（submedian and）median bars $1 \mathbb{R}^{3}-S \mathrm{SH}^{\prime}$ of the forewing are not continnons．

The second group（1I．）comprises the species in which cell－har 3 of the forewing has partly or totally become obliterated，and in which the median bars R^{3}－SM＇are more or less continuons，forming the onter border of a land．

The third group（III．）contains only one species，delphis，whieh has cell－har is interropted as in group 11 ．，but has preserved an ancestral character mot fond in group Il．and mot with ouly in one generalized form of groupl l．（namely $E \cdot$ gammen）；
 less in the direction of $1 h^{2}$ ，forming a very small angle with this vein，the bar is in delphex more transerse，as it certainly was originally in the ancestral forms of Eutepis and（heremes，and as it still is in some（hemeros．Moprover，in groul H．har 1）？ of the himeing is always wanting．whereas it is fomen in delphis and in a number of torms of gromp I．Nedian and summedian hars $\mathrm{NH}^{1}-\mathrm{MI}^{2}$ of the forewing，forming in delphis．generally a ring，are bere more distal than in the species of group 11 ．，at position which is fomd in the species of Chamaes with a more gemeralized pattern． These characters of delphes do not admit its derivation from groups I．and 11 ．；in wher respets the pattem of delphis is so highly specialized that groups 1 ．and 11 ． camot have developed fom at delphis－like ancestor．Henee we lave to con－ider delphis as having indenendently developed from the common ront of all three groups of bivlepix．

1．Forewing below with cell－bars 3^{3} and + complete：median lars R^{3}－s we wot forming a contimuns line，median hars $\mathrm{S}^{(2-}-\mathrm{R}^{3}$ present．
A．Suhmedian ant median lines of hars of himdwing parallel（or nearly su），not merged together at Nl ．
＂．l＇ostdiscal interspaces of hindwing，at least the last three．aboer occupied by creamy or ratims red spots．

1．Eulepis caphontis（Fig．17．1iA，ס）．
Charares caphoutis Hewitson，We．Butt．III．C\％urares t．3．f．14．15（18i3）（I＇t．Denison． Australia，loc．orr．）：Macleay，Tr．E．m．som．N．太．Wrales，I Iroceol．p．27．note（1865）（Fiji， not I＇t．Denison）；Batl．，I＇．Z．ぶ．p．632．n． 38 （1865）（Fiji）：id．，l．c．p．280．v． 39 （1874）
 ठ．Body above olive－black，below greyish broccoli－brown，underside of pal＿i
paler ; head with four ereany dots above ; eyes thinly hordered with creamy seales behind; elub of antenna rnfons brown beneath, apieal segments of same colour also abore.

II ings, upperside_-Forewing hack, olivacems towards hase ; a discal and submarginal series of creamy white spots: diseal spot $1 R^{2}-R^{3}$ dose to cell, minnte, often absent; spot $\mathrm{R}^{1}-\mathrm{R}^{2}$ often a thirl the size as in Fig. 17: last spot suffised, of an olive-buff tint on acconnt of the scales of the under layer being black instead of white : snbmarginal spot $\mathrm{SC}^{4}-\mathrm{SC}^{5}$ mostly absent, thind spot also seldom marked ——Hindwing hrownish llack: a discal olivaceons linff or pale glancons hand down to M^{1}, of nearly even width (abont ? to 3 mm . at K^{1}), sometimes interrupted at SC^{2}, followed by a complete series of postliscal rufous rell spots, I small, \because rounded, 3 ohlong, 4 linear, 5 the largest and, like 6 , concave distally, i and 8 forming a domble spot resembling the number 3 ; summarginal ereamy white dots from ' to SML^{2}, upper two more or less romaled, the others laniform, dots II^{1} —S SH^{2} very thin; admarginal interspaces oeeupied by reddish rufons hars whieh are separated from each other at the vems, hars $R^{1}-H^{\prime}$ with pate glanenns sealing near

Fli:. 17.

171:. 17.s.
 paler than wing ; mper tail larely : mm . lnge, seond tail at rery short tooth.

I'mlirside: varions shades of' lazel and chestnut.--Forewing': cell-har :3 *lighty ditated at the ends, bar t more on dess arehed, nliated at upher ent, where
 lunitorm : diseal bars rather fordly marlsel, bar $\mathrm{R}^{2}-\mathrm{R}$ more proximal that the others ; interual marginal area haekish, this colonr often extended over at greater part of the wing ; interspace between the two cell-bars partly whitish or clayish vinaceons einnamon; diseal and pustdiscal white suts as alnove, but larger, the anterinr ones generally shaded with brown, hence appearing nearly vinaceons ciunamon, not White.-Hiulwing: submedian line of bars arossing il at origin of M*, wighty bordered white proximally; median line of bars just beyond base of Il' convex, costal bar more basal than the others, bars (sil) -sill not at right angles to sil ${ }^{2}$, but pointing more distad than in pyortens: hat W: marked: interspare between suhmedian and median haes more reddish than abdominal region of wing ; diseal white band gradually narrowing from (', where it is 4 mm . wide, to abdominal margin, the whitescaling often rephecel by backish chestnut from (${ }^{\prime}$ to R^{2} and by pate brown behind (Fig. 17A); postliseal rutons red spots nearly as above, 2and 3 urange, 4 linemr,
ametimen ohsolete, all with hack and hluish white proximal borders: sumarginal white dots as above, the last ones minute or olsolete, followel by the heavier black submarginal spots: mimarginal reldish rufons sots trauserse, separated from auch other.
q. Resembles the δ; budy bencath more whitish, melerside of palpi creancolon'. Wings cunce somewhat paler brown, the white markings rather larger, and the posteliscal rufions red and admarginal reddish rafons spets of the hindwing less ral : posteliseal rufins red spots with a glancons whito lumule at proximal side.
 of forewing and in lasal and ablominal region of hindwing heawier : the glancons

..	. lindwing,	-	2:	..	-	36	
.	\& forewing.	-	48	.	-	31	
	.. hindwing.		31			31	

Hul, Fiji lslands: Suva, Viti Levm, Nowember lsat, wet season (Woodford): $\bar{\pi} \delta \delta, 1$ of. Hewitson gave an loeality of this inseet "Port Jenison, Anstralia," Mr. Damel, from whom Hewitson received the sperimen, brobably procured it from a sonth sea skipper. The insect ererainly does not orenr in Anstralia: the Eintepis and ('hormoss of' the last are all split up, into so well-marked geographical forms that the uecurrence of the same species in Australia aud Fiji, without it hisvingr developed into geographical races, appears to be incredilde.

I'mriufion.-The white markings vary very moch in extent ; one of our specimens has the diseal band of the forewing alowe ' mm. wite behind. The white diseal sealing of the upperside of the hindming las sometimes nearly disappeared, being indicated only by a fer erman seales near the and of the eell. The individuals ($\delta \delta$, of of) whicl have the white diseal band well developed below, and those in which it is very obsenre or obsolete, oceur during the same season, as Mr. Woodford ohtained both forms at Snva, Viti Levn, in November, during the rainy season. The discal har $1^{2}-D^{3}$ of the forewing below stands olten just below the median har $\mathrm{D}^{\prime}-\mathrm{D}^{2}$.

\therefore Eulepis gamma (Fig. Is. ISA, ठ).

Cheraxes gumme Lathy, Eutum. XXXI. p. 228 (1598) (New Caledonia ?).
d. Body above olivaceons black, beneath grey, underside of palpi and anterior legs nearly cream-colour : heal alwo with four creamy dots, last seven segments of antemate rutous brown.

Wimgs choce hrownish hack.——Forewing : a diseal and submarginal series of ereamy white sots: diseal spots $\mathrm{Na}^{6}-\mathrm{R}^{2}$ somewhat smaller than wot $\mathrm{R}^{2}-\mathrm{R}^{3}$, which stands cluse to cell, spot $\mathrm{l}^{3}-\lambda{ }^{1}$ very small, the following t wo the largest : of the submarginal dots the first and third are minnte.-Hindwing : a creany White diseal hand from costal margin to $1 \mathrm{l}^{3}$, nearly straght, harely ${ }^{2} \mathrm{a}$ mm. wide, its inner edge sinuate behind $\mathrm{R}^{\mathbf{1}}$, onter edge consex posterionty; a series of three postdiseal hunform spots from R^{3} to Sill 2, consisting of rulons and cream-coloured scales; submarginal spots erem-colour, the first the largest, diameter about "mm.,
 spots; niper tail $4 \frac{1}{2} \mathrm{~mm}$., sceond ${ }_{2}^{2} \frac{2}{4} \mathrm{~mm}$.

Underside eern-drab, with hands and patches in varions brown shades.Forewing: midule har of cell hrown with back ealge, apieal bar almost straight.

FIG. 1x.

FIG. 1RA.
slightly indented in midde, anneal interspace of cell vandyke-brown; sulmedian bars $\mathrm{MI}^{1}-\left(\mathrm{SN}^{1}\right)$ continuons, forming one arched line which is continnons with upper cell-bar: median bars MH^{1}-S N^{2} also continnons, lar (Sl^{2}) - M^{2} couvex distally, har $\mathrm{NH}^{1}-\mathrm{Nl}^{2}$ curved distad at upper eud. har $\mathrm{R}^{3}-\mathrm{NI}^{1}$ moch more distal, har $R^{2}-R^{3}$ elose to cell but separatell from bar D, series of bars $s C^{13}-R^{2}$ broken at R^{\prime}; white discal patehes M^{1}-SC wider than ahove, that at internal margin especially extended, white spot at diseal wide of har R^{3} - Il^{1} thin, linear, the upper ones larger than alove ; discal bars $S C^{\prime}-\mathrm{R}^{2}$ well marred, intersjace between them and discal White pots dark hroceli-brown, bar $\mathbf{1 a}^{2}-\mathrm{H}$ more proximal than median har $R^{1}-R^{2}$, har $R^{3}-l^{1}$ ohlique, well marked, bordered eramy white distally, har: $M^{1}-81^{2}$ jhaced in dark brown patches: no postdiscal bars: submarginal white dots not so well defined as alove, but the posterior ones larger, followed by blackish brown, thin, transverse submarginal bars; marginal area dark lroccoli-brown, margin darker.--Hindwing: upper submedian bar fused with the respective median lar to form a ring, bar C-St thin, straight, cell-bar slightly thicker, bars $\mathrm{M}^{2}-\mathrm{SM}^{2}$ angled twice, continucd to SN^{3}, which they reach abont +mm . from base ; near base of cell there is a trace of the sublasal cell-bar, submedian interspare shiuing ecru-dral); median series of hars as follows: har (- - Sll ${ }^{2}$ skghtly convex distally, continnons with the next, bars $\mathbf{h}^{1}-\mathrm{R}^{3}$ a little more distal, har $\mathrm{R}^{3}-\mathrm{N}^{1}$ still more distal, nearly at right angles to II^{1}, bar $1 \mathrm{Il}^{1}-11^{2}$ more proximal, oblicne, bars
 median interspace drath-colour, shining eern-dral) hefore apex of cell ; discal white band not quite reaching \mathbf{R}^{3}, whated anterionly with brown; discal black baps rather thin, the first and three last luniform, all bordernd white respo blnish white distally, followed by postdiscal spots, of which the upper one and last three are red, the second and third pale broccoli-brown, first, third to fitt h bordered black outwardly: submarginal interspace pale hrocoli-brown: sulmarginal white dots as aloove, *haded with bluish grey scaling ontwardy, hack submarginal spots $\mathrm{SC}^{2}-\mathrm{R}^{3}$ thin, linear, the others forming small dots, all followed distally by admargimal pale ochraceons bars, margin lorocoli-1mown.

Length forewing, costal margin 30 mun, internal margin $2 l \mathrm{~mm}$.

Hab. New Calecionia: in the collections of Mr. II. J. Adam: ($1 \mathrm{\delta}$, type) and Mr. Ph. Crowley (l ठ).

The indivitual in Mr. Ph. ('rowley"s pollection is lahelled "New Hehrides," but Ans: Lathy says, l.e., that the two specimens, which came from Mr. Wr. Watkins, lave afterwards bem ascertaincll to he from "Now ('aldunia."
 ('aledonia has already in fia clifurches a representative on the gemus.

1. Hindwing above without fostdistah spots.

3. Eulepis epigenes (Fig. 190. 20 \&).

8. Body olivaceons black above, with the usmal white dots on head and pronotum: palpi with buffolumed stripu beneath : muderside of thorax and ahdomen, and lege, morer or less russut.
 pots hetwern K^{3} and N^{2}, about 1 mm . in diametire, a third disenl spot hefore R^{3}

 which stand farther from margin than in $6:$ parrows, 1 and $: 8$ minte 2 and + to fi somawhat barger, dongatr-_Hindwing without markings, except a complate
 nper tail a to a man., rather home, serond as in rophomis. lut more pointerd.

Conderside reddish chastnut.- Forewing: : apicat and marginal arra more

distally, Lar 4 proximally, the two bars rather close together, not reaching M ; no submedian bars (always ?) modian hars D - $\$ 3 I^{2}$ eurved, with white diseal patches at their onter side, the submedian pateh the largest (respectively 3 and 5 mom, wide), median bar D^{2} - D^{3} abont 1 mm , from cell and, Jike harrs $\mathrm{S}^{(1+}-\mathrm{D}^{2}$, with a white pot at ontside; discal black hars hamiform, the upher ones inclistinct or absent, their position indicated by greyish sealing, har $\mathrm{D}^{2}-1^{3}$ just buhtind median bar $\mathrm{D}^{1}-\mathrm{D}^{2}$, as in many specimens of conphontis; submarginal sputs not vary clemrly defined, being more or less shaded with rufons chestunt.——Hindwing : anal and abdominal reqion mather blackish: summedian series of three hars, stopping at M, which it reaches before origin of M2, bordered proximally with whitr'; median series of bans slightly convex, bordered white distally; the white borders of modian aud submedian bars sharply detined and of about the same brealth as the bars; seven large romded pustuliscal spots, all rufons red edged proximally by huish whito thin lunules, and eneireled by the discal and postdiscal black bars, which are merged tongether to form rings ; snbmarginal black bars transverse, bluish white submarginal dots small, also more or less transverse; admarginal rufons chestunt trausverso spots slighty separated at veins, posterior ones with pale blue sealing at veins; fringe white at internervular folds; no black lines mon SM^{2} and SM^{3}.
8. Body similar to δ, palpi beneath and breast more whitish.
 a series of white diseal spots, as in jupiter and cuphontio: spots so $-\mathrm{R}^{2}$ ovate, about $\mathfrak{2} \mathrm{mm}$. long'; spot $\mathrm{R}^{2}-\mathrm{R}^{3}$ elose to pell, of ahout same siza ; next xpot romdel, diameter : mm., following three much larger, the last of thems mom. long : sulmarginal spots placed as in cuphortis, uner one generally absent, the following three small.- Hindwing : diseal white band tapering to $\mathrm{M}^{2}, ~ \%$ to 8 mm . wide in front, with glancons scaling at both sides down to (ND ${ }^{1}$), no separate whanoms discal lumles; sumbarginal spots pale glatems, uper two more or less rombled, the others tramomse : mo almarginal spots. Tails as in of somewhat broaler.

Cutherside in various brocoli-brown shates.--F'orewing: hans phaced as in δ; discal white patches aud spots as above, but wider ; discul hars rather obscure; upper subnargital whitw spets also ill-definet.-Dlindwing: bars as in δ, but white border of subnedian bar wider, and horder of median bars replaced ly a bruad white discal hand, which gradually narrows down to M", and then forms a thin discal border to bars $H^{3}-\mathrm{S}^{3}$; the white band does het reach the discal back lnunles; admarginal trausverse spots very obsure, more or less repaced by backish and grlatoons scaling.

Length of forewing, costal margin 37 mm., internal margin ${ }_{2} 5 \mathrm{~mm}$.

$"$, hindwing,	$"$	21	,	$"$	20.	$"$
$"$	\& forewing,	$"$	4.	$"$	$"$	31	$"$
$"$	" hindwing,	"	2	$"$	$"$	31	$"$

Itub. Rolomon lslands: (inadalcauar (Woodtord): Showtland Istands (Ribbe): 1 \&. Mn Mns. Prit., coll. (irose Smith, Ribore.
I^{\prime},urution.-The dissimilarity of the sexes of this species is very remarkahle. this being the only cabe of sexual diehromatism in Vintepis which is comparable to the great diversity in the pattern of the sexes of numerons species of "harmates.

6．The red postdiscal spot－of the underside of the hindwing more or less luniform：she and $\$ \mathrm{H}^{3}$ of hindwing below black．
＂＊．Median line of back bars of hindwing below somewhat convex between（＇aul 11^{1} ．

4．Eulepis clitarchus（Fig．：： 1, 子）．
Charaxes cleurchus Ifewitson，Ex．Butt．V．Charases t．4．f．16，17（1874）（N．Caledonia）：Kirby，
 Limn．Soc．Lond．XXV．p． 388 n． 10^{-7}（IS日方）（Lifu：N．Caledonia）．

S．Body above wive，alnlomen with creamy sealing；muderside of palpi，fore－ tarsi，and hrecoxae white or buffish white：sterna tawn ochraceons at sides，more

Fic． 21.
（ream－colnor in middle；ahdomen creamy at siden，hrownish hadk in middur ；legs： hack，more or less scaled white at cut－ide．

Hzings whoe hack．－Forewing：a broad discal band from internal margin to 11^{1} ，abont $1 \because \mathrm{~mm}$ ．wide forterionly am io mu．at IH^{1} ，creany white：fused with it is a large patch wecmpyine the intorspace betwen cell－bars ：s and t：the basal areat of wing，moreovel．overshaded with creamy acaling which is less temse hasally and costally：cellular patch concave distally：apex wh＇rll nearly filled up by creamy scales，except a small spot at mper angle ：onter edge of discal band indented at sil：them convex to M^{1} ，preceded hefore H^{\prime} by a small thangular creany white

 slightly acparated from each other，preceded by one or two white lines；submarginal shots white，npper two triangular，third minute：sulancolian ones mostly obsolete． onmetimes glancons．－Hindwing：a dieal creamy white band exteuds from costal margin to（SM1）and benee corves romud to abdominal margin，where it is dilated， it gradmally marrow，from se：fo（Syls ；the whole hasal area and dise at outside of band eovered with creamy scaling，but having a glancous tint on accome of tho black colone showing throngh from the meterside of the wing；a series of postliseal
 or fused with it：the black futhisal and sumarginat patches resp．spots are fined，
forming a patch iu which the pale glancous blut sulmarginal trans verne, more or lens Inuiform, spots are placed : patches $18^{1}-11^{2}$ gradually clecrease in size, the posterine oues rounded; admarginal transerse spots concase at louth sifles, fale glantons, the aual one yellow or olivaceous yellow, not wider than the others: abdomiaal fold greyish at edge of wiag, with a black spot beyond tip of SH^{3}, corresponding to medimu bar $S M^{2}-S M^{3}$; fringe white except at tip of veins; tails pointet, npper one 6 mm . loug, second 5 mm .

Cheremide: interspaces russet- im walnut-brown, in marginal region olive.Forewiug : cell-bar 3 rery heavy, 3 or 4 mm. broad behind, thinly bordered white proximally; cell-bar 4 curving from upper to lower angle of cell, much thinuer, interspace white: discucellular bar thin; no subractian bars, or bar M"—(sily marked as a dot; median lar $11^{\prime \prime}$-(SH1) mostly present in form of a large elot, bars $\mathrm{NH}^{1}-\mathrm{II}^{2}$ absent : white discal band ats broad as abose, nearly reaching to base of NI^{2} : median hars $\mathrm{R}^{4}-\mathrm{Ml}^{4}$ continnous with each nther (or uearly so), both borderel white distally; median bars ste- R^{2} rather heary, with broad white continnous patehem at their distal side; discal black bars much better defined than in preceting specter, juiterior ones more or less straight, mper fise lunform, curvel distarl, har $1 \mathbb{R}^{2}-\mathrm{R}$ much less proximal than in cophontis and eqpegenes; posteliscal bars rinsect-clositumt, except submedian ones, which are black and form together a mark similar to the number 3 ; interepaces between discal and postriseal bars white, in submedian cellule glaneons owing to the black colour of the scales of the under layer; sulmarginal white dots well-marked, oversharded with shlsery white sealing, which extenth to the frostdiscal bars and joins at the veins the white pootdiscal internates, glancons. in submedian rellule.-Flinduing : hasal regiou dark cinnamon-ratons, ablominal region paler; white discal band $111-11$ mm. wide at costal edge of wing, harrowing to (Sl^{1}) and curvig romm to abdominal margin, where it is dilated, $1 \frac{1}{2}$ mm. lowad at 11^{2}, not extended to hack discal lmmes: line of median bars, hordering the band proximally, cousex, slightly broken at SC^{2}, of nearly even width, hut hats $\left(S \|^{1}\right)$-SM H^{3} wider; the submedian bars form a mealy straight line, curving distad at custal maryin, reaching to MI , loat the hrow white proximal border extending to near median bars $\mathrm{M}^{2}-\mathrm{SH}^{2}$; a black line upen SN^{2} aud NH from near lase to median hars, bortered white at both sides; discal bars thin, the bluish white Innules separating them from the pustliseal red soots heavier: these spots very different in shape from those of epigents, resembling these of pmovhes, the upler straight, linear, the following slightly Innifom, mach paler than the others, the last three
 $\mathrm{St}^{2}-\mathrm{R}^{3}$ bordered more or less white, the blate postliseal lars being here nearly absent; submarginal interspaces wood-hrown; smbarginal black inots heary, more or less ovate, with the white submarginal spots an proximal ill-defined horders. which aljear blush where the whitish seales lie npon the biack slots; admarginal interspaces nectupied loy yellow biconcase bars, with bluish sealing at the end. of the veins.
9. like the of, lut larger.

Length of forewing, enstal mangin ť mun., internal margin 30 mm .

Itab. New Caledonia and Layalty Inlamts: Latu, 9 ód, 1 ㅇ․

A peculiar, thongh not very conspicnons, feature of this inseet is that the discal hmiform hars of the madeside of the forewing are corved distad, the horns of the lommes pointing hasad, while in all wher species of E"ulepis they are curved in the opposite direction. We have not seen specimens from New 'aledonia, but there is no doubt that the specien ocens on the main island: the examples in British collections labelled New (aledonia are probably from the Loyalty Islands, which \%oogeographically helong to New Caledonia.
12. Median line of bars of himbing below somewhat concave, more or less burallel to summedian line.

ㄷ. Eulepis pyrrhus (lig. $\because 3-35$).
P'upilio Équers Alchicus pyrithes Linnć, šyst. Nut. ed. J. p. 462. n. 24 (1758).

The Amboincese race of lymorne was the first firm of all filleppis and rhureotes made known to syjence.

お年. Head olivacem isabella-won or dive-hlatk: fon white dots above, a white line behind eye. Palpi creamy white, smetimes buffish, free portion of upperside hack. Eyes decp chestmot. Thoma above varying from olive-black to white, with a white dot at each side on fronotum and another on patagium in front of wing: below white or yellowish white, with black stripes maderneath the femora; anterior tibiae and inner side of temora and of two pusterior pars of tibiae black. Aldomen from ofivehlack to white abowe white or more or less hark beneath, its mulerside often different in the sexes.
 width, often extended to base and, hetween M^{2} and sil2, to near onter margin, entire (or mearly sof betwen II^{1} and intermal margin, between Ml^{2} and sis froken up into fonr suits (which are seldom obsolete), spot R^{2} — R^{3} close to apex of cell; a series of sumarginal spots of same colonr as hand- - Hindwing: white discal band more on less triangular, with pale glancons blne sealing at edges, or whole basal area sealed white: a serise of sumarginal dots white or pale ghancons blue; admarinal pale glancons bhe bars entire or interrupted. In fresh specimens the white markings are less yellowish than in worn ones, lant in specimens killed too soou after the cmergence from the chrysatis the postdiscal spots of the underside of the hindwing are pler than in individuals that have been at large.

Conderside varies in the depth of the olive-yellow tints; forewing at inner angle often back or monse-colonr ; hindwing in shtmanginal, often also in abdominal, region more or less drat)-colour or mouse-grey.——Forewing: cell-i)ar 3 very heaw, bordered white distally and proximally; cell-har + thimer than :i, generally joined ufon subcostals to a discocelhular har, bordered white proximally: interspace bet ween bars 3 and + often all white. Snlomedian and median bars $\mathrm{M}^{1}-$ sily ${ }^{2}$ present or absent : median bar R - Ml^{2} present, varying in position, often close to cell: preceding one always close to cell, often tonching discoceltular bar; median bars $S C^{4}-R^{2}$ about halfway between cell ant diseal bars: all median bars form the proximat border of white patches which correspond to those of mperside. Discal hars forming a contimons line, incurved between $1 \mathfrak{R}^{2}$ and H^{2}, bordered distally with millsy white. Submarginal white spots as above, but shaded with milky
white.——Hindwing: no basal and suhbasal hars; sulmentian fars forming a comtinnons, mostly slightly curred, line from costal margin to melian bervure or beyond, the line crossing C close to I' C^{\prime}, thimner behiud, broadly borderell white proximally, this white sealing extending to (Sy1 ${ }^{1}$). Merlizu bars forming a semol line, parallel to the first, continuous (or nearly continuons) from costal margin to \mathbf{R}^{3}, then intermpted, the last bar nearly at right angles to sul ${ }^{2}$ continums with bar ($S \mathrm{M}^{1}$) —SM ${ }^{2}$, the triangular space between it and last har of discal series onten whitish (also on upperside). White discal band at ontside of merlian line of bars luroadest in front, narrowing behind, varying in width and length. Diseal bars continnons from costal marwin to R^{3}, forming mostly an mbroken, evenly but slightly curved line; bars between R^{3} and anal angle loniform : all the lars distally bordered white, the two last ones hordered pale hue: these white lines separato the discal bans from postiscal heary spots, of which the last three are always real, large, and half-moon-shaped, spot $\mathrm{R}^{-}-\mathrm{II}^{1}$ the largest, the preceding three red or yellow, smaller, the upper one more or less red, all lowrdered distally with the back postdiscal, more or less luniform, hars. Sulmarginal black pots proximally foincol to white ones. Admarginal interspaces yellow; margin black: friuge white between veins. SM ${ }^{2}$ (from base to last discal bar) and SM^{3} black. Sometimes a vestigial lan at ead of cell.

Outer margin of forewing concare, more so in δ than in $\%$, slightly convex at the end of the veins. Hindwing with two tails, which are longer in of than in δ^{\prime}, the upper at l^{3} the louger, the second at M^{2} at least $3 \frac{1}{2} \mathrm{~mm}$. long, all pointed except upper in q, which is blunt; onter edge dentate at end of veins.

The larva is known of the subspecies inhabiting Anstralia; it is green, and hats on the segments hearing the first and third pair of alodominal legs a bulf-coloured half-moon-shaped transverse band, which extends laterally to the anterior margin of the segment and cuds on a level with the stigma; the band is broadest above. about half as wide as the segment is long, and is thinly elged with brown: the anterior part of the segment in front of the land is dark blne-green. All the abdominal segments have a lougitudinal pale line below the stigma; these lines thimer on the thoracical segments and somewhat oblique. Head faintly stripect. The elrysalis, which is known to ns of E. pmprotes sempronies and jupiter, is green, with the wing-cases parti-coloured with white. The larva and chrysalis of keiamus (see 5r:) are described by Kiihn.

Hub. The range extends from Sumba, Sambawa, Kalao, wrer Timor, the Moluccas, to the Solomon lslands and New sontle Wales.

The gengraphical forms of $f:$ pryroths are momerons and exhibit partly very compinenns distingnishing characters. The species does not seem tu be pentiful anywhere, though it is by no means a rarity. We know very little atront it, hatsits, and what is recorded muder sempromins does not perhals apply to all forms.
u^{3}. Borly abowe wivacems hawk; abumen white beneath in δ, black ur

 11. 125 1894) (Humboht Bay) ; Butl., Journ. Limu. Šor. Land. XXV. p. S*7. n. 14:3 (189.)
 (1893^{7}) (i erm. N. Guinea, December, January, Apal: Herbertshohe, Neu Pommeru) : Ribbe, his S1. p. $1: 31$ (1s:8) (Seu Pommern).
 Jommern).
6. Heal and thorax above olise-hack: ahomen later, with a broad white median st rije beneath.

Hings. upperwide.-Fonewing witha hhish green gloss towards base: median band behind from ; to 10 mm . wile, narrowing towarls MI^{2} : fatch $\mathrm{M}^{2}-\mathrm{M}^{2}$ seldom

Fは,
"cparated, but always placed a little more distad than patch M"-SM", enpecially its proximal edge : slot $13^{3}-\mathrm{H}^{1}$ more distal, smaller, romded, measnring from : 3 th $4 \frac{1}{2} \mathrm{~mm}$.; spot $\mathrm{R}^{2}-\mathrm{R}^{3}$ close to cell, minute: unper median spots $\mathrm{SC}^{3}-\mathrm{R}^{2}$ somewhat larger than spot $R^{2}-l^{3}$, and little or not larger thau submedian sjot $\mathrm{S}^{13}-\mathrm{R}^{1}$, the upper one ronnded elongate, $1 \frac{1}{2}$ to 3 mm . long. Uppermost snbmarginal apot $\mathrm{SC}^{4}-\mathrm{SC}^{6}$ mostly absent, sedom restigial, the following the largest, the third and the last the smallest: little or mo glancons white scaling at the elges of the median band.llindwing: white median band shaped as below, dilated basad about to origin of R^{1} by means of pale glancons white scaliug, bordered distally with pale glancous bhe. ripecially hearily between R^{3} and Mr^{2}, where the bluish scaling is siunate, formiug sometimes isolated lumules, often extended along I^{2}, seldom also along M^{1}, to join the admarginal spots of the same colour: a pale glancons hine lnnule also hetween M^{2} and $s I^{2}$, separated from a whish trianguar patch at the end of the abrominal fold by a hack line: submarginal dots minute, the second the largest, pale glancous hlue with white centres ; pairs of triangular admarginal spots at end of reins R^{2} to N^{2} : between H^{2} and $\mathrm{S}^{2} \mathrm{H}^{2}$ a complete admarginal yellow bar, the middle part of which is wiler. Upper tail if to 9 min., secoud $3 \frac{2}{2}$ to $i \mathrm{~mm}$. long.
[hderside: marginal area of torewing aud submarginal area of hindwing drabcolour, or monsp-grey, or elayish ochraceous; submedian cellules of forewing more or less slate-colonr, often nearly black distally; rest of ground of wings in varions: shades of elayish ochraceons- Forewing: middle bar of cell marrower than the interspace between it and the curved upher cell-har, often coustricted in middle, sometimes nearly divided into two spots, that interspace bordered white all romel :
discocelinlar bar mostly diated at subcostals, edged white distally, sometimes nearly joined to the mper median bar, which is dilated hasad, by means of some
 forming a short line that crossen M at right angles about \because mm. from cell ; it is bordered white proximally, and does not reach (sll ${ }^{1}$): median har $\mathrm{M}^{2}-\left(\mathrm{SN}^{2}\right)$ mostly close to the corresponding snbmedian one, often conthent with it, extended to ($\boldsymbol{s l l}^{1}$); median bar $\mathrm{M}^{2}-\mathrm{M}^{2}$ more distal, varying in position, its upher end at least $1 \frac{1}{2} \mathrm{~mm}$. from origin of M^{1}; bar $R^{3}-M^{1}$ still more distal: bar $R^{2}-R^{3}$ about I to $1 \frac{1}{2} 1 m m$. from cell at h^{2}, but at R^{3} sometimes tonching discocellular bar ; lar $R^{1}-R^{2}$ abont 10 mm . from cell, curved, the preceding two phaced a little more proximad; white patches resp, spots at ontside of median bars as above, bat those between $\mathrm{S} \mathrm{c}^{5}$ and M^{1} larger, spot $\mathrm{R}^{1}-\mathrm{R}^{2}$ tonching or nearly tonching discal line, white scaling also at ontside of bar $\mathrm{SC}^{2}-\mathrm{SC}^{4}$: submarginal spots luniform or bar-shaped, forming a continnous line from costal margin to $\mathrm{S}^{2} \mathrm{M}^{2}$, mostly joined along the veins to the white discal line.-Hindwing : submedian and median lines curved, the latter crossing M between M^{1} and N^{2}; median hand $5 \frac{1}{2}$ to 8 mm . Wide anterionly, reaching down to N^{2}, its onter edge evenly concave from costal margin to R^{\prime}, bordered ly the black discal line ; three red luniform diseal spots, borlered distally by the hack postdiscal Inuules; diseal spots $\mathrm{SC}^{2}-\mathrm{R}^{3}$ elayish ochraceons, slightly (seldom more heavily) tinged red, often very faintly marked; spot $\mathrm{R}^{2}-\mathrm{R}^{3}$ sometimes alsent: spot ('-sis obliquely concave listally, broadest in front, yellowish red, but shading into clayish ochraceous behind; spots $\mathrm{C}-\mathrm{SC}^{2}$ and $\mathrm{R}^{2}-\mathrm{R}^{3}$ bordered hack, $\mathrm{S} \mathrm{H}^{3}-\mathrm{R}^{2}$ bordered white (or white and back) ontwardly ; submarginal black spots somewhat triangular, the posterior ones more or less ronnded.

Upper cell-bar of forewing, submediau bars of fore- and hindwing ontwardly, the median bars and discocellalar bar proximally toordered plumbeons.

Length-

f. Larger than δ, tails relatively longer: median band of forewing wiler, especially pratch $\mathrm{M}^{2}-\mathrm{M}^{2}$; sulumarginal spots of looth wings larger.

Ifrb. All over New (hanea and the neighbonriay ishands, and on the bismarek Arehipelago: Kapanr, Dutch New Guineab (IV. Doherty, December I-d to Febrnary

 Ati-Ati-Onin, Dutch New Gunea, 1 ó: Waigen, $\because \delta \delta$; Erima. German New Gininea (Hagen, December and Kebruary), 3 ob : Simbang. German New (funea (Hagen, December), \because of : Mihe Bay, British New Guinea, 1 \& ; lort Moresby, British New Guinea, 3 ठ ठ : Fergassun Island (A.s. Meek, September to December 1894), $\because \delta \delta, \because f$; K Kiriwini, Trobriand Istands (J . S. Meek, Mareh to May 1894), If; Herbertshöhe, Nell Pommern (Hagen, May lsyt), 1 \&: Kinignnang, Nun Pommern (Ribbe), 1 子; Neu Hannover (11. (. Webster, Febrnary and Marele Iadi), 1 f. Aru Islands.

I'ariation.-The specimens from Dutch and German New Guinea do nut seem to difter in either sex; in my single jemule from Britisli New Gininea the pale
glaturns hue discal lumbes of the upperside of the hithdwing stand isolatent, while in the fommes from other parts of New dinine: the lanules are merged tongether with the reat of the discal glatucons scaling.

Arn ob (7 q are unknown to ns) agree with New (ininea specimens.
The indiriduals from Ňw Britain (Nen lommern) and Duke of Yorls lsland (Nen Lamenbury) have the sumarginad dots of the upperside of the foreming rather nten rety small in δ. especially the posterion ones, which are sometimes obliterated; the atmarginal triangular pale glanemsi bine spots are also mostly smaller than in ordinary Now (ininear specimens: the discal lumbes of the same enlonr are more oten isolated; the discal spots of the hindwing below deaper red, the upher ones gememally externally more obvionsly hordered black, and the submarginal black dots a little havier. In of the smmarginal spots of the himdwing above are glancons, withont white centres. These slight diflerences do not hokl good in alf examples. not even in the larger propertion of the individuals which have been examined. The name of leronow mant, therefore, be treated as a syonym of jupiter.

The only njecimen (f) known to ns from Nen Hannover hats the discal spots of the maderside of the hindwing math more yellowish red tham jupiter: the sonts sic- h^{3} are hordered black externally: the diseal glancons lumules of the upperside are rather heary, but stand isolated.

In the tint of the discal yellowish red spots the Nen Hannover example agrees fairly well with the five specimens from the D'Eutrecasteaux and Trobriand likame, which are as large as the largest New Guinea individuals, have the discal glancuns lanules of the hindwing thin and isolated, and the white median patch f^{3} — Il^{2} of the underside of the himdwing standing farther away from the diseal line than in ordiuary jupiter. In one of the two Fergusson Island of the median spot $\mathrm{R}^{2}-1 \boldsymbol{R}^{3}$ of the upperside of the forewing just tonches the large median patch $\mathrm{R}^{3}-\mathrm{M}^{2}$. The ground-colon of the maderside is in all five examples more yellowish than in New Guineas specimens.

ith. E. pyrrhus attila (Fig. 23, $\%$).

 Jount. Limu. Not. Loml. AXV. p, 387. sub n. $103(1895)($ attlet $=$ jupiter $)$.
('luceress attiln Smith, Ent Jo. Itt. XXV. p. 301 (1890) (Guadalcanar): id. N Kidby, Rhop. F.rot. I. Cherveses t. 5) F. 1. 2 (1891).

 distad than in jupitur: admarginal glancons spots complete, expanding between the veins, not interruged at the internerviar folds, and anal one alsil glaneons, not ochreous ats in jupitro: submarginal white spots small, the posterior ones linear. Ahmoniual foll with white sealing near lase.
 fused with disencellular one, white spot at ontside of this lar larger than in jupiter: sudmarginal spots better market, white sealing connecting them with one another and the white sealing an diseal black line heavy, also so upon veins.- Hindwing: white border ot snbmedian bhels line wider than in jupitor, athlominal region nearly

measuring hetween h^{2} and h^{\prime} barely " mm.; merlian as well as suthmedian lime nearly straight, the latere crossing it at or near origin of M^{2}; there posterion discal brownish red luniform spots narrower than in jupiter, more heavily bordered back, the spot: ('- R^{2} dirty ochraceons, tinged rel, their white proximal horler heavy, shining throngh above when the inseat is placed between light and eye : back sulbmarginal spots lincar : cellule S ${ }^{(2)}-R^{1}$ more or less silvery in solumarginal region : admarginal hand of greenislo ochraceons bars narrower that in juphter.
9. Nimilar to δ. Snbmarginal and upper four median spots ol forewing above larger, median patch $\left[R^{2}-R^{2}\right.$ suln puadrate, the following also larger than in δ, but separated from patch $\mathrm{M}^{2}-\mathrm{SM}^{2}$. Snbmarginal dot $\mathrm{SC}^{\prime \prime}$ —St present, Lut very small._—Hindwing: pale glancons bhe sealing not more extended than in jupiter of discal pale glanens. blne lumbes separate: snbmarginal spots larger thon in jupiter, the uper on romded, the others linear, those between Ml^{1} and sill pale glancons blue, long, the submerlian ones nearly forming oue line of 7 mom. lengeth:

admarginal spots complote as in σ^{3}, put $h^{3}-I^{\prime}$ prolonged atong l^{3} to near tip ol' tail.

 obliterated.-IIindwing: median haul unt reaching M ${ }^{1}$, portion heymul Rax very thin: discal spots very pale reddish yellow, the last divided, math shaded with l, ilack.

Itul). Solomon Islands : Gnadalcanar (Woulford), in mill. (iprose smith (time δ°, f) and in British Musenm (2 of of): Bongainville (1 i in cull. Ribhe).

This form is especially interesting for the complete almarginal sputs of the hindwing above, the last oue oft which is comeol mons with the others, not oeluraceons, and for the postdiseal spots $3 \mathrm{l}^{2}-5 \mathrm{I}^{2}$ of the madernde being mope on less completely separated liom each other, not theing fusel to form one hamle.

1hr. Ribhe compares his new species celthen with jupitor insteat of entilt, which he dues not mention.

5c．E．pyrrhus keianus（Pl．VI．f．只，\＆）．
Charaxes pyrtus lecames Rothechild，Nov．Zunt．IV゙．p．508．n． 2 （1897）（Kei Toeal：Great Kei）． Charares beiumus，Nieéville \＆Kiihn，Joum．As．Noc．Beng．LXVII．II．p．262，u． 42 （1898）（Keits．。 larva．pupa）．

6．Wings，upperside．——Forewing：discal hand less narrowing in from：pateh $R^{3}-l^{4}$ larger than in jupiter，extending hasad as far or nearly as far as patch $M^{3}-M^{2}$ ， not or scarcely separated from the path hehind it and tonching spot $\mathbf{R}^{2}-\mathbf{h}^{3}$ ，which is mnch larger than in fupiter，being abont 3 mm．long．Mcdian spots $S\left("-l k^{2}\right.$ larger
 seldom vestigial．——Hindming：diseal hand slender，immer edge nearly straight， sliglitly sinnate between $\mathrm{SC}^{2}-\mathrm{R}^{1}$ ，where there appears a spot which is slightly darker than the rest of the bromnish black basal area ：at inner edge of band there is glancons white sealing ouly in cell and behind，while the band is more heavily borileral pale glancous blue ontwardly up to sC^{2} ；discal lumnles of this colom more or less isolated，often nearly absent，except the anal one ；submargimal sjots little heavier than in jupiter，admarginal spots as in that form，bnt anal yellow mark smaller．

Cuderside．—Foreming：mper cell－bar less evenly curved than in juriter，being straight in middle or even slightly bent distad：discocellular har not or slightly dilated distad mon subcostals；submedian bar $\mathrm{M}^{\mathrm{L}}-\mathrm{Ml}^{2}$ close to origin of M^{2} ，some－ times absent，being then indicated only by the white sealing standing at the proximal sile of this bar：submedian bar $\mathrm{M}^{2}-\left(S \mathrm{I}^{5}\right)$ absent ；median bars $\mathrm{R}^{2}-\left(\mathrm{Sl} \mathrm{l}^{1}\right)$ closer to fell than in jupiter：lar $R^{2}-R^{3}$ coutimons with har $R^{3}-M^{1}$ ，merged tugether with the discocellular har，hat anteriorly separated from it by a thin whitish phombeons line：median pateh $1 \mathbf{1}^{3}-3 \mathrm{I}^{1}$ much more widely saparate from discal line than in jupiter．－Ilmelwing ：submedian and median lines straighter than in impiter＂the median one slightly broken at s＂${ }^{\prime 2}$ ，bar $\mathrm{s}^{(1-2}-\mathrm{F}^{1}$ being more tistal than bar（＂－sta ：median land straighter outwartly，the diseal line bordering it being less curved ；discal spots as in jupitez，but mpper one wider anteriorly，black onter＂ border of posterior oucs sometimes very thin：Wack lines upons S^{2} and $\mathrm{S} \mathrm{M}^{3}$ very thin：oblique abdominal bar also thinner than in jupites．

ㅇ．Uiflers from jupiter like δ ．L＇pper discal jathes of forewing still larger： 1ale glaucous blac lanules of hindwing above well isolated．Two of our three \circ o with the upper submarginal dot of forewing present above．

Hab．Kei Toeal（＇ipt．H．C．Webster，January to March 1～06），$\because 8 \delta^{\circ}, 3$ of \＆：

[^2]b^{3} ．Thorax above olivaceons blaek or white ；abomen in both xexen to the greater extent whits．White resp．glancons white sealing of mperside of wings extemdel to hase．

：W．E．pyrrhus pyrrhus（Fis．シャ．ऊ）

 Syst．Ent．p．449．11． 30 （1775）（p．parte）：Cram．，Pop．Er．III．p．tis．t．220．f．1．1：（I7T0） （Amboina）：Goeze，Eint．Beyti：I1I．1．p．50．n． 95 （1779）；Fabr．．太̌pec．Ins．p．10．11， 41 （1781）

 Tbuaberg，Mus ．Wat．Ups．XXIII．p． 9 （180t）．
Prupilio（Achicus）pyorlus，Mitller，Nuturs，V．1．p． 573. n． 25 （177t）（India）．
Prupilio N゙ymphalis zorrhus，Fabricius，Eint．Syst．III．1．p．61．n．192（1793）（1）part＂）．
Pupilio Eques 1chinus conommolutns Goeze，Eut．Bryti．III．1．p．88．n． 77 （175！），
Erthona pyrrichia Hisbner，Jorro．bek．Schno．1r．47．n． 433 （1816）．
Nymphulis pyrrhus，Godart，Enc．Méth．1X．p．350．n． 22 （1823）（Amboina）：Lucas，Lép．LErvet． p． 121 （1835）（Amboina）；Doubl．\＆Wentw．，fifn．Diurn．Lep．II．p． 309. n． $2+(1850)$（Ambnina）：
 （1884）（Amboina）：Wallace，Nat．Sil．und Tropiral N＇ut．p． 385 note（18．11），
Nympholis puprus，Lucas，l．c．t．65．f．\cup（1835）．
 Amboina $=$ sempronius F ．ex Australia $=$ typtupes．Feld．）．

 Schurtl，p． 173 （1886）（Amboina）；Riblee，Jris 11．p． 240. n． 79 （1890）（Ceram）：Butl．，Jom\％． Limu．soc．Lond．XXY．p．387．n． 102 （1895）（Amboina）：Oberth．，Lit．dEmf．XX．p．xiii．fig． （1896）（Ceram）．

ठ＂．Larger than jopiter．Head and thorax ahore olivaceons black，mesof horax behind greyish，metathorax white at silles，grey in middle；aldomen white abore and below．

11 ings，＂pporside．－Forewing：hasal area behind cell up to discal hand ghancons white，a few glancons scales in front of 31 in cell，sometimes seareely any such seates between M and M^{2} ：median band abont $s \mathrm{~mm}$ ，wide at（ $\left(\mathrm{SI}^{1}\right),: 8$ to +mm ，hehind N^{1} ；patch $\mathrm{M}^{1}-\mathrm{MI}^{2}$ estending as far basad as patch M^{1} —s H^{2} ，hence inner edge of hand nearly straight as in heimnes； 11^{2} black；patch R －$-\mathrm{H}^{2}$ mostly rombed． isolated，varying in width from 3_{21}^{1} to $i f$ mm．，placed less distal than in jupiter， standing mostly rather close to sput $R^{2}-\mathrm{K}^{3}$ ，wheh is larger than in jupiter，some－ times only one－third smaller than patch $\mathrm{R}^{*}-\mathrm{M} \mathrm{I}^{2}$ ；median spots sta^{6}－ R^{*} nearly always somewhat smaller than spot $R^{2}-R^{3}, 1$ to $0 \frac{1}{2} \mathrm{~mm}$ ，long，the mper the smalter． often obsolete；snlmarginal spots larger than in impiter，spot st mosty absent，sometimes vestigial，less often as large as spot $R^{1}-R^{2}$ ，pot $S^{3}-R^{2}$ about
 glancons white ；median hand bordered proximally 1 a hack line lrom（＇to R^{1} ，or from（ $10 \mathrm{St}^{2}$ ；median band narrow，varying in leugth，sometimes stopping at R ，
 SC^{2} to abdominal margin well marked，partly isolated；submarginal white dot． larger than in jupiter，shaded with glancons bhe，the nyper two of about the same size，diameter $1 \frac{1}{2}$ to 2 mm ．；admarginal greyish wheons hue internervalar spots．
not interrupted hetween veins, seklom centred white, amal one calminm-yellow; abdominal foh brown distally or nearly all dirty white, terminated by a whitish triangnlar spot.

I'nerwide: hack hars and lines very heary, at least twice as thick as in jupiter; gromad-colom more or less tawny olive, forewing mostly more yellowish, mach less silvery and monse-colour than in, jupiter.- Forewing: middle eell-bar $2 \frac{1}{2}$ to 4 mm . wide, generally dilated at both ends, abont as wide as the interspace between it and snhapical bar; this latter fusel with the lisocellalar bar, ouly sparated from it in middle by a narrow interspace, which is often represented be a thin white line; base of cell tamy olive, postmedian interspace of cell white with centre more or less yellowish tawny olive; two sumnedian hars $\mathrm{M}^{1}-\left(\mathrm{NM}^{1}\right)$, close to cell, thinl! bordered white proximally, more or less completely fused with the resp. median hars: median bar $R^{3}-M^{1}$ more distal, often filling of the angle $R^{3}-M^{1}$, bar $R^{2}-R^{3}$ fnsed with discocellular one: white median patch $R^{3}-M 1^{1}$ at 112 to 3 mm . distant from heary discal line: white border of discal line, appearing posteriorly hoish, as

Fui. 21.

Well as submarginal spots variable in width, often so heary that the iuterspaces have the shape of rather thin lunnles.- Hindwing: black lines from I to $1 \frac{1}{2}$ mm. wide; white border of submedian line not broader than this line, often thinner: median line sometimes joining snhmedian one at costal margin : white discal band triangular, is to 10 mm . broad at costal margin, strongly narrowing hehind, barely 1 mm . wide between K^{2} and R^{3}, often stopping at R , sometimes extending bevond M^{2}, its inner alge straight or incurved at ${ }^{\prime}$, outer edge concave, not well marked om acconnt of tawny olive scaling that separates the band from the black discal, strongly arehed. line; three posterior discal spots mostly somewhat deeper red than in jupherr: spots
 $\mathrm{Sl}^{(22}-12^{2}$ ochraceons, hordered white or white and black ontwardly; ; pots ('—S' ${ }^{2}$ with heary black border, anterimply little wider than posterionly; hack submarginal spots transverse, hearly as large as the admarginal ochraceons ones; ablominal median bar more oblique than in impiter, usually widened upon S $1 l^{2}$, sometimes connected with the last black discal lmmle and mostly joinuer the line SM^{3}.
of Head and thorax as in of: ahdomen beneath with a broat black middle
stripe. Wings as in δ, lat the white markings of mpersile of forewing larger; diseal patch R^{3} - M^{1} rather often extended to rell, diseal spots $\mathrm{S}^{4}-\mathrm{R}^{1}$ over if mm. long in one of my Amboina of of sulmarginal spot sc"- S(${ }^{4}$ present, but small. On underside the black patch formed ly sumedian and median hars M^{2} - (SN^{2}) often small on acconnt of the large development of the white colour.

Length of forewing, costal margin 49 mm ., intemal margin 33 mm .

$"$, hindwing,	$"$	2π	,	$"$	33	$"$
$"$	i foreming,	$"$	58	$"$	$"$	40
$"$	$"$ hindwing,	$"$	35	$"$	$"$	$3 i$

The. E. pyrrhus bandanus Rothscho, subsp, nor. (Fig, 凉, if).
i. Similar to pyrrhus pyrrhus; lout forewing above with diseal hand wider; patel $\mathrm{NH}^{1}-\mathrm{M}^{2}$ extemed to cell, 14 mm . long at M^{2}; patch R^{3} — M^{2} longer than in

Fig. 2\%
pyroth: pmphens, reaching cell, 11 mm . long at I^{1} : greater part of cell shated with buffish white scales, which form a distinct pateh at lower angle of cell ; upere submarginal spot well marked, more than half the size of the third spot $1 R^{2}-R^{3}$. Hindwing : submarginal spots small, the anterior ones not half the size of those of

Ioderwide; hack hars sme lines not so heavy as in purthes poprolus.- Forewing : milde cell-bar about hall' the width of the nearly all white sulatheal interspace ; apical cell-bar not so widn as the interspace splatating it from har 1 , to which it is joined at both ends: sulmarginal spons aloser to elge of wiug.-Hindwing : whit" discal band wider letworn somd H^{2}, extendiug down to M: submarginal white spots small, the lilack omen atwo smathen than in pyrrtens; the admarginal ochraceons spots heavien and dener intint, marginal line thiner; backi
 wider apart from last diseal lumle than in p morhus.

Mub. Banda Islands (W . Doherty), I \&

$\therefore f$ E. pyrrhus buruanus liothelh., sulsp, nov. (Fig. 26, उ).

3. Smaller than prorkus, resembling gitolensis. Boly as in perrhes pyrmeux. IFings. upperside.-Forewing : posterior haif of cell shaded with glancons white seales, which are denser before apex: white discal hand very wide, only if mm. distant from onter edge of wing at $S \mathrm{H}^{2}$; the interspace hetwen hand and cell resp, hase of wing demely sealed ghanenus white, hat at $M^{2}+\mathrm{mm}$. from cell,
 froximally, diameter ahout $3 \frac{2}{2} \mathrm{~mm}$., patch $\mathrm{R}^{2}-\mathrm{R}^{3}$ it little smaller; median sputs

Fil\%, 26.
 ouses shaded with glancons.-Hindwing: white discal band thin, reachiug beyond II, which it crosses at origin of M^{1}; glancons white scaling dense, covering the greater bart of the wing: onter edge of this area concave between veins, the diseal lunules of the preceding subspecies here not being separated; black outer area widest at $\mathrm{s} \mathrm{C}^{-2}(13 \mathrm{~mm}$.) , strougly narrowing behind, where it is convex between the veins both proximally and distally; ghacons discal scaling extending a little along M^{\prime} and M^{2}, hut not joining the admarginal spots, which are thimer in midde than in the two preceding races; submarginal dots glancons with white centres, smaller than in pyrrhus.

L'nderside: all the bars and lines, exeept middle bar of cell of forewing, thimer
 interspace following it narrow, encircled with white; suhupical bar thimer, posteriorly not joined to discocelhular bar, which is thin and anteriorly not dilated distad ; apieal interspace of cell ochracems, wider than subapieal har; sumbedian
 median ours, the ngper toneling M with opper ent; median har $\mathbf{R}^{3}-31^{1} \because$ mom. from lower angle of cell at R^{3}, har $\mathrm{R}^{2}-\mathrm{R}^{3}$ merged together with discocellutar har, three upper median hars prolonged hasad along veins ; white distal band coming close to discal line at (N^{2}) ; gresish silvery border of discal line rather thin; sumarginal spots small with little silvery scaling round them, the last two nearly ohliterated. -Hindwing: white discal hand narrow, but watending down to M ${ }^{1}$, abont a mm. in front, gradually tapering behind, distally concave to R^{3}, separated from thin diseat black line by a narrow olivaceons interspace except at costal margin: discal spots
all red, but spot $1^{2}-R^{3}$ replaced liy black and white sealos intermixed with very few red ones, elongate: spots $S C^{12}-R^{2}$ and $R^{3}-H^{1}$ more romuded than in preceding races, rather heavily hordered hack distally; submarginal whito dots small, hark
 oblipue, not joining the line SM, at (SaH^{1}) 2 mm . di-tant from anal Immle of riseal series: lines $S A^{2}$ and $S H^{3}$ thin.

> Length forewing, costal margin 41 mm ., internal margin $2!$ mm.
> " hindwing, " $\because ., \quad$, $\because 9$.

ig. E. pyrrhus obiensis Rothech., sulhsp. nov. (Fig. 学, ठ) .
ठ. Somewhat larger than butumus. Abdomet grey above.
 again as spot $\mathbf{R}^{2}-\mathbf{R}^{3}$: grancons white cellnlar scaling not denser near apex uf cell

Fig. 2ї.
(in one individual altogether wanting) ; sumarginal spot Ans - westigial or absent.-—Hindwing : submarginal spots without obvions white centres; admarginal spots partly interrmpted at internervolar folds, or nearly so ; discal glancoms white scaling as in buructus, in one specimen extended along $1 \mathrm{I}^{\prime}$ and $3{ }^{2}$, joiniug the admarginal spots ; white median band narrow, stopping at $\mathrm{sl}^{\prime \prime}$.

Inederside: bars and lines heavier than in burnenns, except discal liue-Forewing: median bars $\mathrm{S}^{2}-\mathrm{H}^{2}$ very harive, much extendel basad, sometimes nearly reaching opper end of discocellular har: diseal bars somewhat lmiform, wider distant from distal margin of wing than in preceding subspecies, hence interspace between diseal line and suhmarrinal small spots wider than nsmally: diseal
 withont silvery border ; silvery sealing at onter side of submarginal spots fomming between M^{1} and SMP^{2} a spot close to margin of wing.- llindwing: white median land very short, stopping at $\mathrm{S}^{t^{22}}$, or continued to R^{3} as a very thin white or gramons line, much shaded with ochrems in front, then with olive, being white only at edrew
of median black line，more than if to 10 mm ．wide at cestal aly of wing；smb） median and median lines joining each other in front，except in one individual ：discal line strongly incurved from（＇to R^{3} ，behind R^{2} only 1 mm ．distant from median line，in one example conflont with that line from $\left[\mathfrak{l}^{1}\right.$ to R^{2} ：discal spots all red；

 somewhat flexmas，mosily tonehing or almost tonching amal lunote of discal series

 burnemes；sulmarginal white dots smaller than in beremmes ；submarginal area slate－colom．

Hob）．Lawni，Istand of Ohi（W．Dohorts，simember 189i），示 $\delta \delta$ 。

二h．E．pyrrhus gilolensis（Fig．2s，ठ）．

Charures gilulensis Butler，Lep．W．tot．I．p．14．t．5．f．G．t．6．f． 3 （18t9）（Batjan；Giloho）；Kirby， Gut．Diurn．Lep．p．271．n． 37 （1875）（Gilolo；Batjan）；Oberth．，Am，1hus．（＂ie．Genowe NV．p．504（1899）（Ilalmaheira）；Staud．，Frot．schmett．p．17：（1886）（13atjan）；Ribbe，
 （1s！5）（Batjan，！！！n）．

子．Differs from obiensis especially in the bhack area of the upperside of the hindwing heing narrower．in the white diseat band of the moldersile leing mods

Fic． 28.
longer，extembing to B^{2} or mearly to M^{2} ，leing much parer white，with the outer edge hetter deffeed，in the diseal hack line standing farther away from median line behind $1 R^{2}$ ，and in the almarginal spots of nper－and muterside being heavier，less constricted in middle．

CPperside．－Fonewing ：ghanems white scaling in cell selfom denser near origin of II^{1} ：median patel R^{3} — II^{1} rarying considerably in size，diameter ${ }_{2} \frac{1}{2}$ to imm．esmetimes smaller than spot $\mathrm{R}^{2}-\mathrm{l}^{3}$ ，distance letwern these spots $\frac{1}{2}$ to 3 mm ． in different indivilnak：first anlmarginal dot bestigial or nearly as large as sumt
 M^{2} ，mostly joining the atmarginal spots，jsolating completely two rombled，chlipoid，
 less, pateh $\mathrm{M}^{2}-\mathrm{SM}^{2}$ narrower.

C'uherside-Forewing: mpler enll-har either straight (or nearly so), then pusteriorly not joined to disencellular bar, and apical interspace triangular, ponteriorly wider than bar, or subapical bar heavier, somewhat curved, joined to discocellolar bar at both euds, with a thin linear apical inter-pace: submedian and respr median bars merged together or free; median bar $13^{3}-1 L^{2}$ sometimes a heavy patch; patchlike bar $R^{\prime}-R^{2}$ either well separated from discalme, or tonching it ; submarginal spots and white sealing varying in extent, sometimes with thin black lines at the outside: inner angle (as in obirmsis) with an indistinct whitish pot outsikle the summrginal spot, corresponding to the admarginal sjuts of hiudwing- - llindwing: submedian and median lines straight at costal margin, or (mostly) curving towards each wther, sometimes joined together, varyiug in thickness; merlian band i to ! mm. wide at edge of wing, $1 \frac{1}{2}$ to $\xlongequal[2]{2} \mathrm{~mm}$. at R^{1}, not shaded over with ohraceons and olive scaling ; mper discal red spot thimer bordered black distally than the following two: median har $\mathrm{N}^{2}-\left(\mathrm{S} \mathrm{M}^{1}\right)$ present.
9. Epperside.-Forewing: median patel $\mathrm{R}^{3}-\mathrm{Nl}^{1}$ extended to cell (ILalmaheira), or nearly to cell (Batjan); white area nearly reaching sulmarginal spots between $\mathrm{MH}^{1}-\mathrm{SM}^{2}$; median spots $\mathrm{St}^{2}-\mathrm{R}^{3}$ larger than in δ, sint $\mathrm{R}^{2}-\mathrm{R}^{3}$ close to that behind it ; posterior threc-lifths of cell white:

Chederside: discal red spots of hindwing smatler than in δ, paler red.
Hab. Northern Molnceas: Batjau, 3 ठ δ : Halmaheira (W. Doherty, Angnst 1-9:), I o; females in coll. Stautinger.

ㅎ. E. pyrrhus seitzi (lll. V. f. 1. \&).

ठ. Head, pronotnm, and anterior furtion of mesonotum olive-lnown; rest of mesonotnm, metanotnm, and abdomen white.

Wings, "pperside.—Furewing: cell with white scaling, condensed to a patch heyond mithle, apex and uprer angle black; median banl more proximal than in the preceding forms of phrmus, its inner edge crussing M just a little beyond origin
 $\mathrm{R}^{3}-\mathrm{N}^{1}$ indicated by a few seales, spot $\mathrm{R}^{2}-\mathrm{R}^{3}$ obliterated, seldom it few white scales Ielt, spots $S\left({ }^{1}-R^{2}\right.$ also alsent or ouly vestigial; first aml third sumarginal dota vestigial, second elongate, last two absent or indicated lye ar fow trancons scalles: abdominal fold gresish brown at end, terminated by a greyish white patch. -Hindwing: glancons white scaling extending from base nearly to hend of h, posteriorly more restricted than in preceding races, its outer edge only : 10.5 mm . from origin of M^{2} : discal whitish glancoms lanitorm spots betwoen k and M^{2} widely separated from the basi-discal areah, sumetimes thenetete: diseal band raching to R^{3}, a little wider than in gilolenoix : snbmarginal glancons spots minate: admarginal spots from si^{2} to anal angle, constrinted in middle, the Mprer unes interropted.

L'uderside dark tawne olive, with at peculian' chocolat" hue.- Forewing: postmedian cellular interspace white, with few orbraceons seales: cell-bar I thimer than in gilolensis, posterionly not joined to the thin bar 1), apical cellular interspace twice

with bar D at both cods, with a thin tawny ochraceons line between, bar $\mathrm{R}^{\prime}-\mathrm{R}^{2}$ arehed, the preceding two coniform: White diseal patches $\mathrm{R}^{3}-1 \mathrm{I}^{1}$ limiform ; diseal line of bars rather heare: submarginal spots somewhat thinner than in gilolensis;
 I^{2}-S Il^{2} obseme.——Hindwing: submedian aud median lines curved towards each other, or joining each other, at costal margin, median line broken beyond K^{3},
 gradually narrowing behind, stopping at R^{3}, pure white, its onter edge slightly concave, separated from diseal black line by an intorspace of nearly eqnal width throughout (2 mm .) ; discal spots deep red, except spots $\mathrm{S}^{2}-\mathrm{R}^{2}$, which are more rufons, 口pper one trapuziform as in burumus, black unter border of these spots thin: submarginal white dots thin, anterior ones nearly obliterated, black spots as in yilolensis, not tonching veins; ochreons admarginal spots heary, with pale ghancous hue triangular spots at ends of veins: lines upon $S \omega^{2}$ and $S H^{3}$ thin.
\&. Culonred like δ, but first smbmarginal spot of forewing above larger than the third: white area of hindwing a little more restricted than in δ; diseal pale glancons blue spots more or less obsolete, submarginal spots somewhat larger, but pusterior ones only vestigial. On underside white band of hindwing very little extending beyond \mathbf{k}°; "xternal black border of discal spots sometimes rather heary (see figure); summarginal white spots larger, but much shaded with glancons.

\therefore E. pyrrhus galaxia (Hig. a! $2, \delta$).

[^3] notum purer white.

IVints, upperwich --Porewing: white hasal area (inelusive of discal band) a little more extended distad than in seitzi, filling the cell except apex and occupyiug base of costal margin, aud iften covering also the lase of collnle $\mathrm{R}^{3}-\mathrm{M}^{\prime}$; median ofot R^{3} - Il^{2} ronded ur transwerse, diameter ? to :3mm.. isolaterl, spot $\mathrm{R}^{2}-\mathrm{R}^{3}$ smaller, often abont half the size, the two close tugether or alanot 1 mm . distant from each other, median pots st s 5 - \boldsymbol{R}^{2} always prsent, the upper vue the larger (? mo. wide); sulmarginal spots heary, the thirt the smallest, the firs abont as large as the seomt ($\because \mathrm{mm}$.), rarely monh smaller, the two last sometimes watigial.——Hindwing: ghtucons white area reaching to diseal pale glaucons blue lnundes, which are oither fused with that area or are stighty separated; submargimal spots smaller than those of forewing, the fifth often vestigial, the last two linear, forming mostly a thin curved line, posterior ones more glancons, anterior ones nore white: mharginal pots from R^{1} to $S^{2}{ }^{2}$, constricted in middle or interrupted, seldom a spot before \mathbb{R}^{1}, those at R^{3} and M^{2} extending inte tails; abdominal fold white, slightly brownsh thwarels eurd.

C'nderside tawny olive, recrion of imer angle of forewing hlackish, sobnarginat area of hindwing olive--Forewing as in stitat; cell-bar 3 simate at distal side: discal patch $\mathrm{M}^{2}-\mathrm{SN}^{2}$ wider than in sectit; discal= line obvions hetween M^{1} and
 incised spot.--Hindwiug: submedian and median lines uearly as in witzi, median one alwars crossiug M beyond origin of Mr^{1}, interrapted at IR^{3} and MI^{1}, abolominal
 s to 10 mm . wide at costal margin, but ouly 2 to 3 mm . broad at (', very irregular, mostly stopling at R^{1}, seldom extending to R^{2}, or furming beyond k^{2} ouly a very thin glancous white border to the median bars; interspace between diseal band and diseal black line about 5 mm . between the veins ; bar C - SC^{2} of diseal series more arched than the following three, all rather thin, the last three not tonching each wther ; three posterior diseal spots red, spots $U-\mathrm{SC}^{2}$ and $\mathrm{R}^{2}-\mathrm{R}^{3}$ wore or less red, often

Fif. 29.
Sellowish, spots S (k^{2} ochreons, somewhat tingel with red; sulmaryinal white "pets ill-detined, shaled with glancons, black one transverse, beavier, not tonching veins. A thin discocellular bar very often indicated.
9. Pronotnm and anterior portion of mesonotum more white than in δ. Aerees in pattern with $\delta:$ snlmurginal pots (as usmally) rather larger, mpecially the first of the forewing alore.

Ifth. Timor: Dili (IT. Woherty, Hay lays), l: $\delta \delta, 1$ f: Wetter (II. Doherty,

In the epecimens from Wetter the snbmarginal -pots of the hindwing above are sometimes smaller and less white than in Timer individuals: the mettian Land of the hindwing below extends in one example to Bf : in anme others the methan line of hars is less interrupted at R^{2} an! Ml^{2}.

 those before and behind it, smbtrapezifom, sumwhat concaw proximally, diameter
 grelurie, over +mm , long: snbmargiual spots: alsu larger, first a little larger that

diseal glancons acaling dnaser and somewhat more extended：white modian hand broader and longer；submarginal spots much larger，especially the tirst four ； admarginal sputs heavior，that lefore SC^{2} nearly complete，bat thin．

Cinderside．－Forewing：white discal hand $34 \mathrm{tam} . \mathrm{m}$ ．distant from black discal line between M^{2} and Sl^{2} ，spot R^{3} — Ml^{1} twice as large as in grkertio．——IIndwing ： white discal band－mm，wide in front，gradmally marrowing to R^{3} ，eontinmed to M^{2}

ドれ，：
by a thin white line ：mediau line broken at R^{3} and II^{\prime} ，hut mot interrupted；intor－ space between white baud and discal，more evenly cimved，line abont $l_{3} \mathrm{~mm}$ ；
 at distal wide of it rather more white than in ymbersen：smbmarginal white spots heavier．

Itrb．Letti（W．Moherty，Jnly l－92），I \％．
Vein Ml^{1} of the Jeft lorewing is forked in this specimen，the resp，shmarginal poot duble on uperside．

Sm．E．pyrrhus aloranus liothoch．，subspor．（Fig．31，\＆．
 （Alor）．
9． 11 ings，＂pperside－Korewing：white area as in gaturtin，lout on dise l＇rmm iuner margin to beyond NI^{2} rather widely edged with pale glancons，so that the black outer area is posteriorly somewhat narrower even than in lettirnas ；patch M^{1}－ Il^{2} very obligue ontwardy，the extreme angle of cellule R^{3} — N^{1} scaled ghancous White and spot $R^{3}-1 f^{1}$ just tonehing the white area，dianeters 3 and t mom．respo， separated from poot $\mathrm{Ra}^{2}-\mathrm{R}^{7}$ ，which measures $\because \underset{2}{3}$ and 3 mm ．in longitutinal and transerse direction respectively，only by the back voin；spots st＂－ 18^{2} somewhat longer than in lettimus ；submarginal spots as in that race，but posterior two separate． ——Ilindwing posteriorly more extended glaneous than in both galarim ant leftianm： snbmarginal spots．in size hetween those of the two allied subspecies；admarginal spots leavy，seven in number，the lirst， 1 －$S\left({ }^{\prime 2}\right.$ ，rounded，all the others transverse． not intermpted．
 line of fore- and hindwing, which is heaviel-——orewing: whito discal patch
 abso betwen the resp. spot of those subspecies; mper mediau bars st ${ }^{3}-\mathrm{R}^{1}$ more proximal, and the white patches at their ontsile larger than in the preceding forms, but not tonching discal line; white postmedian interspace of coll wider than in

Fig. 31.
lettimms.-Hindwing: white discal band stopping at R^{3}, little wider than in golncin, as widely selarated from the diseal line-which has the same shape as in guluran-as in that subspecies: liness SI^{2} and s SI^{3} very thin.

ठ. Very elose to certain examples of yoltrert, hut submarginal spots of forewing ahove larger, diseal spots $\mathbb{K}^{2}-\mathbf{M}^{1}$ rombled, larger ; discal band of hindwing below axtending just beyond R^{2}, discal bars $\mathrm{R}^{3}-\mathrm{N}^{2}$ withont white extermal bondro.

Ilub. Alor (A. Everett, April tagi), if (typm): 1 ot in Dr. I'igenstechar's eollection.

5n. E. pyrrhus jovis (Fig. 3: , ठ)

Chareres joreis staudinger, Mis VII. p. 357 (1804) (Sambawa) : Pagenst., Jutert Siess I'm. Sut. NLIX. p. 144. n. 85 (1896) (pt. ; Sambawa).
 (pt. ; Nambawa).

or wearly toushing the grlaucons sealing hetween R^{3} and Nl^{1} : spot $\mathbf{R}^{2}-R^{3}$ small, transersely linear, separater from soot $R^{3}-11^{1}$ by the black vein ; diseal spots sc"- R^{2} as in galnom, but mosily al little larger, sehlom with some white seales in frout : submarginal spots as large as in lettiones of, the last two mostly merged together, the first of en larger than the secoud, the third the smallest.- Hindwing: diseal glancons scaling (sometimes pale violet) posteriorly more extended than in ulorums, the distance Inetween the diseal area and the admarginal spot being only 4 mm . midway between II^{1} and H^{3}; submarginal spots large, white, but sometimes shaded with glaneons; admarginal spots $1 i^{2}-11^{2}$ complete, butfish or whitish in middle, spots $\mathrm{SC}^{2}-\mathrm{R}^{2}$ mostly also complete, spot ($-\mathrm{N}^{(2 n}$ vestigial or absent, as is sometimes spot $\mathrm{S}^{(\mathrm{Cz}}-\mathrm{R}^{1}$.

Underside of a lighter yellow tint thau in yulturio: submargimul reyion of hindwing little more olivaceons than rest of wing.-Forewing: submedian and

Fili. 32.
 cellalar line: white mediau spots nearly as in guluxita, except pateh $1 \Lambda^{1}-I^{2}$, which in specimens with the respective median and snbmedian bars present does not extend to cell: spot $\mathfrak{k}^{3}-1^{1}$ varying in size, sometimes larger than in gulaciu; submarginal spots larger, more nate, the two near imer angle especially larger: $\mathrm{i}_{\text {nner }}$ calge of wing white to near inner angle.—Hindwing : suhmedian and median lines diverging costad, the median line being strongly enrved hasad ; cellular fortion of summedian line thin, barely reaching M; median line broken at R^{3} and J^{1}, but not interrupted : white diseal land as in celorames, but continued nearly to an' hy the elearly white border of median bars $\mathbf{R}^{3}-\mathrm{M}^{2}$: interspace between hand and discal hatack lince narrower than in gutervin and aloranus, but wider than in leftimme: discal some paler red than in guturiu, their black onter border mostly thimer ; black submarginal spots smaller than in geln, riee ; discocellular bar vestigial.
8. Unknuwn.

Hub. Sambawa, 4 o δ.

5o. E. pyrrhus kalaonicus Rothsch., subsi). nov. (Fiy. 33, of).

ठ. Unknown.
ㅇ. Irings, upperwide.-Forewing: white median band variable in extent, wider between $\mathrm{M}^{2}-\mathrm{SM}$ than in all the preceding subspecies, from \because to i mu. distant from submarginal spot $\mathbf{M}^{2}-S \mathbf{N}^{2}$, with glancons swaling at onter eder: basally the band exteuds to origin of M^{2}; base and cell white as in jocis: discal patch $R^{3}-1 N^{1}$ varying in length at R^{3} from 4 to s mm., hasal edge straight or concare, base of cellule $\mathrm{R}^{2}-\mathrm{l}^{3}$ sealed glancons white: spot $\mathrm{R}^{3}-\mathrm{l}^{3} .2 \cdot \mathrm{l}$ to +mm . long at R^{3} : two upper median spots $\mathrm{S} \mathrm{C}^{3}-\mathrm{R}^{2}$ heavy, both concave hasally, the first 4 to 5 , the second $2 \frac{1}{2}$ to $3 \frac{2}{2} \mathrm{~mm}$. long : snbmarginal spots mostly licavier than in jocis o.-—llindwing as in iocis δ^{3}, but discal scaling more extended between

Fle. 33.
R^{t} and R^{3}, and less exterded between R^{3} and ll^{2}, the bhek arom heing, therefore, comparatively narrower in middle and wider behind than in joris; grancons sealen along ($\mathbf{N D}^{\prime}$), dividing the hack anal patch; sumarginal spots white, larger than in jocis δ : admarginal spots somewhat thimer, strongly eonstricted in middle, spot hefore Se complete, linear, or divider, yelluw spot hess heary than in joxiw and alorenus.

I'nderside, - Forewing: submedian and median hars M1 --(SNI mostly absent, hut in one example bars $\mathrm{NI}^{2}-\mathrm{H}^{2}$ are present, finset ; median bar $\mathrm{R}^{2}-\mathrm{K}^{3}$ very thin, fused at both ends with har D, the interspace extremely thin; white median patch
 nearly tonches that bar, while in the fourth example it is 3 mm . distant from it.llindwiug : submedian and median lines anterionly not divergent, bent towards cach other at edge of wing, or even foining each other, tarther apart in tront of cell than in jocis; white discal band as in letticmus, broader than in joxis, interspace hetween band and discal black line wider than in lettionus.

Andomen betheath in one a wath all white.

As in the chosely allied form from sumba the sexes do not dither essentially iu the shape if the metian band and the form of the snbmedian aud median lines of
 jores in uealy the same way ats the of of lintromens do.

(heraces sp., Doherty, Jume. Is siow. Beny. LN. II. p. 174. n. 4s (1891).
 t. …f. fi. ठ (1896) (Sumba).
 (1898) (pt. : Sumbal).

Forewings in loth sexes more falcate than in any other pyrmus form.

Fig. 34.
upler discal spots SC^{15} - h^{2} mostly mach larger than in joeis and kuluonichs, the first up to -mm . long, mostly with a white line in front: submarginal spots as heavy as in kulaonirus or heavier.-Hindwing in o as in joris 8 , Int bhack area wider between
 in middle.

Chereside.-Forewing: submedian and median bars $\mathrm{M}^{2}-\left(\mathrm{S} \mathrm{H}^{2}\right)$ mostly absent, but in several sjecimens represented loy one hack spet : bars $\mathrm{H}^{1}-\mathrm{M}^{2}$ present in all examples, lut olten more on less completely merged together : median bar $\mathrm{R}^{3}-\mathrm{N}^{1}$ cursen distad at Il^{1}, when very obligue: white discal patches und spots as large as
in kulumicus or larger; discal line of back bars more strongly bent hasal behind 1^{2} than in futaoners.-Hindwins: submedian and median lines mearly as in foris, anteriorly farther apart than in kaluonicus: white tiscal band as in joris.

Abdomen of of often all white beneath.

Type: of with abdomen white leneath.
Doherty (le.) says: "A very large Chumaces apprently of the cmomippus groop was several times seen in the monutains of Sumba, and again in those of Sambawa. Unlike C. cuntumippes, which is a gronnd butterfy, it always alightel high mpon trees, so that I cond never eatch it. Another species, something Iike C. pyrthes, was once seeu in sumba." Whether the insects here alluded to helonged to two species instead of one we do not know ; bat an jocis on Samlawa and scipio on Sumba are now known not to be very rate, it is rely likely that the species of the "entumipus group" was really a pyrrhus form, while the form restmbing "pyrrhus" was most probably the "harraxes described by me as sumbenus.

5\%, E. pyrrhus sempronius (Fig. 3.5, ठ).

Papeitio Nymphoplis sempromius Fahricius, lint. Šyst. 111. 1. p. 62. n. I9t (1793) (Patria ").
Jusin custrulis Swainson, Zuol. Ill. 11. t. 114 (1833) (Careening Ibay ; Pt. Nelson ; N.W. Anstralia).
 L.cp. II. p. 309. n. 27 (1850) (Australia).

Clumares fyctueus Felder, Wrien. Eint. Zeit. JII. p. 399. n. 42. t. 9. f. 3 (F859) (N. India).
Churnxes sempromius, Butler, P. Z. S. p. 633. n. 42 (1865) (Australia) ; id., Cut. Diumor. Lepr, deser.
 (Rockhampton; Bowen; Pt. Denison; Cape York): Staud., Erot. Schmett. p. 173 (1880); Edwards, Insept Life II. p. 13 (1889) (stridulation); Olliff, Thi Instrel. Aluseum II. p. 98 (1889) (Lord Howe Island): Walk., Ent. Mo. I/u. NXTII. p. 283 (1891) (Adelaide R.; N.W. Austr.) ; Fraser, ihid. XXXI. p. 14 (1895) (N. S. Wales) : Butl., Joum. Limn. Šec. Lome. XXV. p. 388. n. 106 (1895) (Queensland ; Sydney).
 Flunter R. ; Clarence R.).
d. Irings, "pperside-_Forewing: white (or cramy) area larger than in sripio, reaching (or nearly reaching) submarginal donble-sput $J^{2}-8 l^{2}$, submaryinal spon $\|^{1}-M^{2}$ sometimes also joinell to the white area; hase of cellnle $\mathrm{K}^{2}-\operatorname{ll}^{1}$ all white, or the blark discocellular line extending into this cellnte; jatch $\mathrm{R}^{3}-\mathrm{ll}$ exteuding at II^{1} at least halfway to submarginal soot $\mathrm{R}-\mathrm{M} \mathrm{l}^{1}$, its outer edge obligne; spot $R^{2}-R^{3}$ almout one-third the size of the patch $R^{2}-N^{1}$: upper median spots $\operatorname{sC}^{6}-\mathrm{R}^{2}$ as in sumb form on smaller, sometimes with a white line in front: "pper angle of cell ocenpied by a rather small black spot: sulmarginal spots. smaller than in scipio, the first in North Wheensland examples sometmes minte. the second $1 \frac{1}{3}$ to 3 mm . long.-Ilindwing: Dlack area rather variable in widh. generally mone restrictod than in seipio: in one North (bueensland specimen of my eollection much reducel from 1^{1} to sil ${ }^{2}$, the diseal orlanenus seating extending near the reins to near the admarginal spots: summareinal ipots small, oftern minute, dot $11^{1}-31^{2}$ sometimes absent: admargimal xpots $1 \mathrm{R}^{2}$-sill completr, narrowed and

 a pateh; bar $\mathrm{R}^{2}-\mathrm{R}^{3}$ completely fused with discocellalar line: har $\mathrm{l}^{1} \mathrm{ha}^{2}$ mostly
arched, sometimes stabht: cell-har : very heary, cell-har 4 anteriorly joining har D, interspace between the last two lars often not wider than enflhar t itself: discal line rather strongly incurved behind 12^{2}, sometimes eompletely broken at this vein; submarginal white spots very heavy, white diseal band sharply defined distally, extending from cell to diseal line from inmer margin of wing to berond MI^{2}, pateh $\mathrm{I}^{1}-J^{2}$ obliquely ent of behind $3 \mathrm{I}^{1}$, patch $\mathrm{R}^{3}-\mathrm{I}^{1}$ sometimes also reaching Ghase to discal line.-Hindwing: submedian line often extembing heyond M, with heavy white border: median line strongly broken at (C ; bar $\mathrm{l}^{2}-\mathrm{R}^{3}$ reaching Il just at orisin of M^{1} : har $\mathrm{M}^{2}-\left(\mathrm{SM} \mathrm{H}^{1}\right.$) sharply angle-shaped, mostly joimed to the hast
 end generally tonching the same hmole, tringular space at distal side of this har shaded with white: white diseal band very broad, tapering bohind, reaching to Mt^{2}

or at least extended beyont M^{1}, witest behind (', separated from discal line of hars by a narrow hackish brown or tawny olive internpace which is seldom as wide as in scipio; white line at distal side of diseal line between C and R^{3} heavy, shining throngh alove: diseal spots coloured as in impitor, posterion ones not heavier than in scipio, spots $\mathrm{SC}^{2}-1^{2}$ with rather heary silvery sealing at ontside: submarginal white spots luniform or subluniform, black ones more or less romided; hack lines uron $S H^{2}$ and $S J^{3}$ thin, the former ohsolete towards hase : abdominal region shated with white scales.
8. Mostly considmably larger than δ.

Upperside- Worewing: white area and spots often more extended than in δ : sobmarginal spots $3 I^{1}-S y^{2}$ often merged together with the white hasi-discal area. -llindwine: anterior snbmareinal spots larger than in d; postertor ones small, often stronely shanded with glaneons.

Conderside.-Forewing: white are more cxtemed than it is mencrally in of snbmedian and median bars $\mathrm{MI}^{2}-\mathrm{MI}^{1}$ ofteru present, but fusel together : median har $13^{3}-M^{1}$ seldom entirely absent; white discal band broader, extended to iliseal line, from which it is seldom separated by a narow olive-tawny interspace ; berasionally the band is prolonged to the abdominal triangular patch standing at proximal sid. of the last black discal lumult, in which case mentian lars H^{2} - whe are more proximal than nsnally : black submarginal spots liuger and more transverse than in δ.

In the white tellular patch of the forewing below there appear rarely latack dots, either isolated or joined to the ldack bars.

Length of forewing, costal maryin ti mm., internal margin 33 mm ,

., hiodwing,	.	28	-	.,	3 ?	..
,. forewing,	.	37	.,	.	$\because 4$	"
., hindwing,	-	21	.	"	$\because 4$.
\& forewing,	.	\%	-	-	11	.
., hiodwing,		3.	.	"	:	.
, forewing,		48	\cdots	"	3:	.
.. himdwing,	"	2	.	"	31	.

Larva and chrysalis, see p. 5is.
 lard Howe Island.

I'arintion.-As sail in the above description, the white area of the wings: varies considerably. On the whitest specimens Felder's typorens is fonnded; hat we do not think that even Felder would have treated these extreme individuals as specifically distinct from sempronins if he had not heen madn the wrong impression that his tyrucus came from North India; he compares it with parphus only, not with semproniws. The same form is figured by swainson from N.W. Australia as (minstrelis.

Ihbits,- Semper (l.e.) says: "The imagines like to settle on the trmuks of trees, of which they suck the exnding sap) : they are then drowsy, and are easily canght."
 another eamphor-tree insect, bat it also feects on some of the wattles. A trmly grand creature he is . . . and particularly notiecable from the wouterlinl papidity of flight. I seliom saw them rest fur more than a few moments, hut they wonld glid" swiltly mpand llown hetwern the long rows of orange trees, then smdenty rise and flask ont of sight over the tops ol the forest trees."

Mr. Folwards (le.) says of this insect: "The Chemecers ans it atights mpon a bunch of the beantifnl and sweet-seented fluwers of Bursuriu spinesu closes its wings with a grating somel not milike that of the frepomen, and repeats the same as it is disturbed from its resting -

(f. Eulepis cognatus (lig. 32. ふ).

 (Moluccas!).

§. Bonly above ulivaroms hack, laead amb promotmon with the nemal white dots:
maderside white, stemat with hack ofligne stripes underneath the femorat : anterind tiliae and external side of femmar Wack.
 straght hand of discal spots from intomal margin to h^{3}, the posterion one ahont simm. long, and like the suhmedian patch, which is more or less ohvinsly divided be the summedian fotd, edged with bhe scalius, especially lroadly so at the

 the anterine one often satrel! indicated, a litthe more proximal than the ot ber ; a serise of six submarginal, sometimes shighty lmofish, small sunts, following in pesition the enve of the distal marein of the wiug. sumedian me often obsoletre,
 brom in frout, slightly narowing towarls M, ilan triangular: disc from la^{1} th (SM') light late, this area nearly reaching anal atgle of wing, only of mom from

F'is. 36 .
transerse, small, white summarginal spots; mharginal hue spots interrupted, forming triangles at veins, anal one complete with the upher half yellow; abdominal fold grey, showing a triangnlar paler grey patch beyond tip of sil ${ }^{3}$: tails long and slenter, first 8 mm ., second $6 \frac{1}{2} \mathrm{~mm}$.

Coulerside.—Forewiug: cell-har 3 straight, joined along M and se' to the thinuer cell-har 4 , the juncture continued aloug subcostals and R^{3} to the heary
 other, joined along (心 N^{2}) to median bar H^{2} —s NI^{2}; median bar $\mathrm{N}^{1}-\mathrm{N}^{2}$ very deaply emved, the homs of the half-mom pointing distad and readhing the distal hars: bar $\mathrm{R}^{3}-\mathrm{M}^{1}$ obligue, either also arthen, on nearly straipht, tombling discal

 one strongly oblifne, gently curved, pointing latail at H^{2} : bar $\mathrm{H}^{3}-\mathrm{R}^{3}$ much more proximal, and, like the following three, stromgly arched: discal white patches bortered proximally by the median hare, pateh It^{2} —S SI^{2} separated from respective black discal humbe ley a brownish hack, proximally convex. pateh of $\because 2$ width. patela $\mathrm{Il}^{\prime}-\mathrm{Il}^{2}$ also selarate from the diseal luniform bar, while pateln
R^{3} - Ml^{1} tonches the discal bar ; at distal sinle of discal hars a white lamel of more or less confluent spots, of which the distal enge is sometimes not sharply defined and which inchude the postdiscal bars ; these are luniform, the npper ones down to 11^{2} more or less obsolete or quite absent, the last two. $31^{2}-\mathrm{N}^{2}{ }^{2}$, bladk, fused to form a mark resembling the number of phas and median intersjace of cell, hase of costal margin, internal marginal area (extending basally to cell) and interprace between median bars $\mathrm{St}^{6}-\mathrm{R}^{2}$, and nearly the whole intershace between median and diseal bars $1^{2}-\mathrm{R}^{3}$, white ; internal maryinal area externally black along Hl^{2}; rest of wiog russet, external marginal area paler.--IIndwing: submedian line of hars heavy, extending just beyond 11 ; median bars also heayy. har $\mathrm{NH}^{2}-\mathrm{II}^{2}$
 not se]mraten from each other, forming one line that stands at right angles to shl ${ }^{2}$ and is gradually dilated josteriorly : discal white bant ats ahore, extenting to Il^{2}, slightly narrowing down to R^{2}, then strongly triangular: dixeal hars $\mathrm{Na}^{1}-\mathrm{K}^{2}$ Leavy, forming a continous curved line that stands immediately at the edge of the white band: discal bar $1 t^{2}-11^{3}$ very short, not reaching k, finsed with the postliscal black bar to form i linear spot lehind R^{2}; discal bars R^{1}-N Nl^{2} lunilom, well separated from each other; postliscal rufous red spots phaced as in fyrmotes, first obliqne, very narrow behind, scarcely (or not) tonching $\mathrm{s}^{\prime \prime}$? , separated from discal bar by a bluish white lunnle, and externally bordered by the very thin postdiseal hack har, spots $\mathrm{SC}^{2}-\mathrm{l}^{2}$ absent; the postdiscal bars close to the diseal ones, from which they are separated by white bars; postdiscal bar se when with patch of white scales at outer side; rufous red spot R^{3} — M^{1} obliqne, ovate, the next two somewhat hean-shaped, all three edged black distally and huish white or (the last) nearly blue proximally ; submarginal black hars transverse, linear: white submarginal spots of the same shape, broaler ; admarginal spots also transverse, not intermited at the internervilar folds, ochraceons, with blue triangles at the tips of the posterior nermles ; marginal hack line lead-colour in certain lights : lasal area nj, to smbedian lars and (Na^{2}) white, with the scales of the mater layer more or less dark hrown ; interspace between subnedian and median bars and outer area of wing russef, paler towards submarginal spots and between $S^{12}-R^{1}$.
q. Unknown ; probably not essentially different from of, judging from the allied species.

The species is described from the "Molnceas," under which name the inland of 'elebes was formerly incheded; it does not, of course, ofour on the Molnceas proper. As Everett and Fruhstorfer did not ment with cogmetus, and Doherty also did not succeet in finding it again luring his trip to Palos l biuy in $18: \%$, it mast he a rare insect. In the furewing leing much more strongly falate than in the Dolucean forms of mprome, E. cognutus jossesses a remarkable charatere fomad in so many Celebensian Iymphetidue and Pupelionitue. Most anthors hase associatel E. cognertus with E. schreiber, but rogmetus is, in fact, a C'elehensian representative of E. pyrrhes, with which it agrees in the development of the cell-bars, the discal and postliseal bars, and submareinal spots of the forewing, while it disagrees in these markings entirely with acturethor. 'The presence of the rather bright blue discal scaling on the upprevide of the wings of looth cognutus and selemeibers was probally the reason why the spectes were assoriated with one another: but this maracter is of no signitionce, as the bhe serating is also fomm in perromes, thongh it has there a less bright tint.
A^{1}. Snlmedian and median hars of hindwing below converging lehind, fused at M.

$$
\therefore \text { Eulepis kadeui (Fig. 3:. 38). }
$$

(\%) Nymphulis delacne 1)outheday, We stwoml, \& Hewitson, Gemera Marn. Lap. 11. p. 308 (1850) (Eastern Archipelago).

ठ. Body above wivacens hack, bencath white, ciges of abominal segments hack; head and pronotnm with the nsual dots: sterma black under the femora; legs black, with seattured white seales, anterior tarsi white.

Hings: upperside black, olive towards hase, with large discal cream-coloured area which is pale glancous at edge.-Forewing: hack hars of muderside showing through; creamy white area 18 to 20 mm . wile at internal margin, reaching to la^{2},
 upler patch (hefore vein l°) much smaller than that behimd it, extended to I, with median bar $\mathrm{R}^{2}-\mathrm{R}^{3}$ restigial or showing through from underside: a solitary diseal spot 18'— \mathbf{R}^{2}, kower angle of apex of eell more or less extended arramy: often a mumber of tiny submarginal phots indicated, sometimes there is also a slight trace of at diseal sjot before \mathbb{R}^{1}. ——Dindwing: Hiscal area stuming at abdominal fold, estended distad beyond enrve of $1 \mathrm{~K}^{2}$: close to edger of area there are often several pale crancons blue lumbes, the last one always matsed: fone submargiual, lineare. White marlings between sf^{e} and $\mathrm{M1}^{1}$, the last oblique; there is seldom a trace of an additional line before s ${ }^{(2}$, while there are twore very short lines between II and (s I^{1}), the later of the two heing often continned to sill ${ }^{2}$: admarginal spots hom, upper ones thin, thuse between R^{3} and T^{2} heary, extending to wear tip of tails, anal me broader, yellow in middle; fringe white hetween veins: abdominal fold haek, with a buish white sealing, a hoe and white patch beyond tip of shb: rails lomg. amrving towards ach other, upper tail 11 to $1+$ mm., second ! to $1 \because 1 \mathrm{~mm}$. long.

C'uderside white.-Forewing: bassal and costal region milky white, distal marginal area nlive, beroming gradually pater towards postdiseal spots: base of (bostal and subcostal nervures Wack; hoth cell-bars heary, straight (or nearly so), Whinuely pointing distad with mper end: bar I) also heasy, of abont the same width as the hars on dise; two sulmedian hars, the second generally fused with the corresponding median bar, both not extending beyond (sll), while the upper cme is continuous with uper eell-har; median bar $M^{1}-M^{2}$ somewhat curved, mot prolonged along weins as in cognetus, placed just beyond origin of M': median har
 N(22-R2 more or less fired to form one heary, gently curved, line: diseal hars Al x^{3} - R^{2} heavy fused, forming another heary line, which is indented at the veins; har R^{2} - R^{3} subuquadrate, much more proximal than the others, the following discal hars R^{3}-sid thin, honitom: postdiscal hars developed to more or less romuded spots, the posterior ones in the Sumatra lorm rather weak.-Hindwing: sulmedian and median bars fused to two heavy lines, ahout $1 \frac{1}{2}$ mm. broad, converging behind, fusing at M and then ruming down to near last diseal lmule, where the line meets the median bar ($\mathrm{S} \mathrm{IH}^{1}$) $-S \mathrm{l}^{3}$, which stands abont at right augles to $\mathrm{SM}{ }^{2}$, slightly inclining lasad, ond is dilated hehind: discal bars luniform, uper three fused to a concave line, fourth forms (as in cognetus) thenether with the postdiscal har in long
black heary line, har R^{3} - Jl^{1} obligne, all these bars with chayish tawny rating at proximal side, exeept the long lunte M^{2} — $S \mathrm{I}^{2}$, the njper three and last three odged hlue-white distally; sulmarginal interspace $\mathrm{C}-\mathrm{R}^{2}$ olivaceous isabehla-tolour, postdiscal bar (1 —St? fused with respective discal one, postdiseal lars $\mathrm{SC} \mathrm{C}^{2}$ — R^{2} not well defined, the former with white scaling at distal side; between R^{3} and $s I^{2}$ the postdiscal bars are laniform, 3 to 5 mm . distant from discal ones, the interspaces filled by maroon-red patches; snbmarginal white spots linear, thin, spots R^{3} —SM ${ }^{2}$ curved, spot $\mathrm{C}-\mathrm{SC}^{2}$ vestigial or alsent; black submarginal hars more or less leadcolour, fused with the marginal line; three admarginal yellow spots from R^{3} to s H^{2}, tha anal one large: pale hlue spots at tips of veins, that hehind h^{3} and the one before M^{2} extebding to wear tip of tails; fringe of abdominal margia black; area enclosed by $S \mathrm{~N}^{2}$, $\left(\mathrm{S} \mathrm{H}^{1}\right)$, and median bar ($\mathrm{SM} \mathrm{H}^{1}$) — $S \mathrm{H}^{3}$ black, densely sprinkled over with white scales; interspace between sobmedian and median bars white, like lasal, discal, and rest of abdominal area.
8. Not esseutially different from δ : larger.

Irub. Java and Simatra, at higher eleration.
The Java form with the less extended white scaling of the upperside and the more clearly marked posterior discal and postliseal spots of the mularside of the forewing represents the less specialized of the two known gengraphical races ul herkme.

Dr. Batler (Journ. Lime. Soc. Lont. XXV. p. 386) consilers londeni to be intermediate between the "athamas and schereberi groms " : it in, however, more closely allied to cognatus and pyrrhus in the development of thr markings than then chen uthamas or seforeiber.
 (= Charnces anct.): "A very remarkable and beantifnl new - pecies in the masom of the Jardin des Plantes has the tails well developed, bot instead of being straight and parallel they are curved, so that the tips of each pair converge, nearly maeting together. It is a native of the Lastern Archipelago, and has hem named in Ms. N. De Haanii."

This dehenti is most probally our insect, but the above deseription of the shape of the tails is not sufficient to remove all doubts: for if in long-tailed Fintepis and Charraxe, when set out, the tails become slightly twisted, they appear to be enrvol, pointing towards each other ; it is massibte (thongh not probable) that the insect referred to as dehumi had the tails conserging towards each other fir the sam. reason, and was not lindeni.

ia. E. kadeui kadeni (Fig. 32, d).

 (1871) (Jara) : Staud., Exut. Nchmett. p. 173 (1886) (Jara) : Butl., Joum. Limm. sive. Lowd. NXT. p. 386. 11. 98 (1895) (Java).

Eutquis Eantenii, Moore, Lepp. Indica II. p. 263 (1895) (Java).

 its ill-defined onter edge at Ml^{2} at least 5 mm . distant from distal margin of wing ;

White sealing in cell restricted to a small patels which reaches from lower angle of (ell to about half or two-thirds the way to origin of Il^{2} : outer edge of area biconenve

 apots nearly as woll deceloped as respective markings $\mathrm{M}^{1}-\mathrm{M}^{2}$: hackish olive soming betwen white discal hand and diseal black bars not wider than $1!$ mon betwern veins ('to R^{3}.
7. Largenthan δ : bate area of distal margin hatrower, anal yellow apot larger.

Fig. 37.
 Fruhstorfer.

Wallace (l.e.) saly of the only specimen he obtained in West dava in Octoher 1-ibl: "Onc day a buy brought me a butterfly between his fingers, perfeetly muhart. He had canght it as it was sitting with wings erect, sucking up the lignid from a muddy spot ly the rodside. Many of the finest tropical butterties have this habit, and they are genemaly so intent upon their meal that they can be casily approached and eaptured. It proved to be the rare and curions Cherrores kindemi, remarkable for having on each hindwing two eurved tails like a pair of callipers. It was the only sperimen I ever saw, and is still the only representative of ite kind in English collections." Mr. de Niceville (Journ. As. sor. Meng. LA゙lV. M. p. 434. 149.5) remarks that "Dr. Wallace obtained ther first known specimen of t. hadenif in 1801." This is not correct, as Dr. Fedder deseribel the species in 1shor from K゙uden": collectiou.

i\%. E. kadeni sulthan (Fir, 3- δ).

 11. 10.434. n. 25 (1805) (Snmatra).

Churusps ludenai Feld. war. sulthun 1tagen, his p. 181. n. 242 (189/i) (Numatra).

ठ. Wings, uphuside.- Forewiug: distal elge mostly more straight: white area extending basad heyond urigin of MI^{2}. and distad nearer to distal edge of wing
than in the Java form，the black marginal area being at $1 \mathrm{H}^{2}$ only of mm．widu；the area is also less obvionsly concave between NI^{2} and M^{2} ；cell norly all white，white sealing at least much more extended than in kotem kodeni－Hintwinet ：yoftow anal patch 3 mm ．wide ；white area exteuting to base．
 preceding spots also smaller than in Java form．－Hindwing：seating between white discal band and discal black bars clayish tawny，twice as wide as in dava race，anal yellow spit also moch larger：silvery sealing in smbarginal inter－pare $\therefore r^{\prime 2}-R^{1}$ less extended．

F゙に，3以。

子．Unknown．

Iful）．Snmatra，at higher elevation：Karo comtry and Platean of Tobah． 3 ठ 子。

Dr．Martin received from his collectors during two years only seven specimens of the species from the Central Platean of N．E．Numatra，and he says（l．f．）that ＂nearly all were captured on the facces of Karbomm buflaher．deposited on the sandy river banks where the buffaloes used to drink．＂

The specimen tigured has an additional hamk line on the underside of the forewing in front of M^{2} ．

> (To be continued.)

Explanation of plates V . TO Niva.

PIATE V.
lïg. 1. Eulepis pyorus seitsi i, prons, Tenimber taland.
,. 2. Chemenes ensorgei J, Uganda.
, B. " azotu ठ, Delagoa Bay.
., 4. ", trevetensis δ, Taveta, IE. Africa.
". 5. ". etesipe ठ. suffused aberration, Sierra Leone.

I'ATE VJ.
Jig. 1. Characes mintus of, Camerom:.
, 2. Eulepis photus lieimus of, pions, Kei Islands.
,. 3. Chotaxes Ulamus ठ, (iemman E. Africal.
" 4. "unticlea o. Sierra leone.
. 5. ". imperirlis if, sierra Leone.

['IATE VII.

Fig. 1. Characes fubizes humaibal of Celebes.

```
. \(2 . \quad\).. sumatronus o (subil. nov.), sumatra.
., 3. ,. lotom dionr \(\circ\), Neu Hannover.
,. 4. ,. odyssers i. St. Thomas.
. 5. ., thomasius \({ }^{\circ}\).
```


Plate Yih.

Eulepis cudrmiphus, warions forms. \% δ.
Fig. 1. Darjeeling.
., 2. Shan Stater.
., 3 .
,. 4. Formosa.
, 5. Clina.
,. 6. ,.

PLATE IN

rig. 1. 2. Eulepis dolun ถ̛ ठ̉, Sikkim.
$\therefore \quad$ i. ,, nepenthes δ, Lper 'tonkin.

.. 7.8. hetrimeserchlol of, \&, Madaga-at.

PLATE X

```
Fig. 1. Eulepis athumus \delta, Nikkim, March.
    .. !. .. .. ठ, , June.
    " :3. .. .. \delta, ., March.
    . 4. ", " of, ,. November.
    ., %. .. ., \delta', ,, Octuber.
    , (%. ," arjor viberi \delta, Khavia Ilills.
    " %. .. uthamas \delta, Kandy.
    ." 8. ", " \delta, S.E. Borneo.
    " 9. ", " \delta, Khasia Hills.
    ., 10. " ", ठ`, Shan States.
    , ll. ,. ", ठ,N.f. Sumatra.
```

 HLATE N.
 Various forms of Eulepis nthemers.
 Fïg. 1. δ from Java.
., 2. δ, Lombok.
" 3. \& ", Java.
" 4. \& ", sambara.
" 5. ठ , Lombok.
" 6. ठ ,, Sumba.
" 7. ठ , Mindoro.
- 8. ㅇ ", "
" 9. © ., Palawan.
. 10. ठ , , ,
, 11. δ,, Wetter.
.. 12. δ., Timor.

Mate XII.

Fïg. 1. Eutepis schreiberi schreiveri o, Bomeo.
. 2. ", \quad veterdi ठ", Kanara.
,, 3^{3} to 7 . Forms of Eultrpis moori.
, \%. of from the Naga Hills.
, 4. δ, Perak.
, $\overline{3}$. $\&$, Ilava.
" (i. or , Singatore.

-, 8 to 12. Forms of Eulepis helde.
, \&. δ from Java.
., \% उ "N. Borneo.
.. 10. ठ ,. N.E. sumatra.
, ll. o ", Bali.
.. 12. \& ., Java.

IMATE XHI.

Fig. 1. l'ortion of the contal margin of the forewing of Churches tivitutes, upperside.
," 2. The same, underside.
" :3. The same of Eiclep is porrlus sempronius, upperside.
" 4. The same, underside.
. 5. The same of Ch. borveensis, underside.
., 6. Portion of radial nervule of forewing of Cynthin, underside.
, 7. The same of Chereves fubius.
". 8. C'ostal margin of l'enthenos yumbirisius, upperside.
,. 9. 'The same, underside.
" 10. Portion of a radial nervule of Eulepis cthemere, upprerside.
, 11. hasal portion of inner-marginal region of the underside of the forewing of E. athemes.
12. The same of Pollo decius.
" 13. Nodified triangular scale of the basal patel of E. phorhus.
," 14. Seale from the vicinity of the patcll of triangular seales of $E \cdot$ pmoners.
, 15. Last two joints of hinder tarsi of E. eulemipurs ס', underside.
, 16. Tip of the last joint of the hinder tarsi of the same, upperside.
. 17. Anterior tarsus of femule of Ch. juson, demuled, lateral view.
:, 18. The same with sealing.
, 19. The same from underside (another individual).
" 20. Fifth joint of the anterior tassi of femele of P'elle decies, ventral view.
.. 21 . 'The same, side view.

PLate Niva.

Fig. 22. Last abdominal segments of $C h$. jason d^{2}, lateral view.
,2.3. The same, the eighth segment removed.
," 24. The same, the elaiper of one side remosed.

- 25. The same, from above.

26. 'The stme, from below.
27. 'The same of I'tlla decius, as fig. 24.
28. The same, from above.
29. The same, from below.
30. End of abdomen of Choruzes jusum 9 , ventral view.
31. The same of Pelle recius $\frac{\text { o ventral view. }}{\text {, ven }}$
:32. Terminal portion of peus of Ch. pocthon.
32. Dorsal phate of tenth abrominal segment of $\angle:$, jelysus.
:3.4. The same, with two apical teeth.
33. The same of E. evelomipurs.
:36. The same of Ch. cumanes.
34. P'enis-fumel of Eulegis pyrntus sempronius, lloral view.
35. ., , , ,, ", , "ide view.
36. ", ", "C\%. "ntome" ""perensis, dorsal view.
37. " .. " ., ." side view.
38. ." ". . ('le fubins, dorsal view.
$42 . \quad$ " \quad.. side view.

[^0]: of the forewing of Chara, wes has, to his knowlelge, not lieen noticel by other anthors. Trimen, however, mentioned that peculiarity of "Cherases" alreaty in his south African Butterthes, ed, 11.

[^1]: with a brush of hars like that of tho other semments, and I believed I had fund a striking dificernete

[^2]: ＊Mr．de Xicéville，l．e．，says：＂This speeies is describer by de Nicésille in Jurn．Bomb．Nat． Hist．Soe．，Vol．X1l．，p．，1n．\＆，pl．Z，ligs．13．male；14，female（18：8）．When describing it de Sicéviln，did not know that it would subsequently be named by the 11 on．Watter Fothschind．＂

 My deseription appeared in December 1897 ；de Nicéville cites my description，while in 1×98 he did not yet know the number of the gage on which his teseription in Journ．Bumb．Nat．Hixf．Sise． will appear，nor have 1 reccived，up to December 1898 ，the number of the Journal which contains de Nicérille＇s description．

 Kiilm，wh，has lerel the larya，says（l．c．）that it＂fecds on Albizain spo，and also on Mesua ferrea （Ironwood）．The pula in of the usual slape，very broad，rounded，smooth，with some small knobs only ronnd the cremaster．In colnur it is pale green，with snow－white stripes and dashes．${ }^{\text {a }}$

[^3]:

